留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远红外固体激光器研究进展

温雅 吴春婷 袁泽锐 龚亮宇 金光勇

温雅, 吴春婷, 袁泽锐, 龚亮宇, 金光勇. 远红外固体激光器研究进展[J]. 中国光学(中英文), 2018, 11(6): 889-900. doi: 10.3788/CO.20181106.0889
引用本文: 温雅, 吴春婷, 袁泽锐, 龚亮宇, 金光勇. 远红外固体激光器研究进展[J]. 中国光学(中英文), 2018, 11(6): 889-900. doi: 10.3788/CO.20181106.0889
WEN Ya, WU Chun-ting, YUAN Ze-rui, GONG Liang-yu, JIN Guang-yong. Research progress of far-infrared solid-state lasers[J]. Chinese Optics, 2018, 11(6): 889-900. doi: 10.3788/CO.20181106.0889
Citation: WEN Ya, WU Chun-ting, YUAN Ze-rui, GONG Liang-yu, JIN Guang-yong. Research progress of far-infrared solid-state lasers[J]. Chinese Optics, 2018, 11(6): 889-900. doi: 10.3788/CO.20181106.0889

远红外固体激光器研究进展

doi: 10.3788/CO.20181106.0889
基金项目: 

吉林省科技厅自然科学基金 20160101331JC

吉林省科技厅创新领军人才及团队项目 20170519007JH

详细信息
    作者简介:

    温雅(1990-), 女, 河北石家庄人, 博士研究生, 2015年于长春理工大学获得理学硕士学位, 主要从事激光物理与新型固体激光器的研究。E-mail:winvene@163.com

    吴春婷(1982—),女,吉林长春人,教授,博士生导师,2011年于哈尔滨工业大学获得工学博士学位,主要从事激光物理与新型激光器的研究。E-mail:bigsnow1@163.com

    金光勇(1971—),男,吉林长春人,研究员,博士生导师,2003年于长春理工大学获得工学博士学位,主要从事激光及其与物质相互作用、激光物理与新型固体激光器的研究。E-mail:jgycust@163.com

  • 中图分类号: TN247;TN249

Research progress of far-infrared solid-state lasers

More Information
  • 摘要: 8~12 μm波段是大气的一个窗口,被定义为长波红外波段。该波段激光对雾、烟尘等具有较强的穿透力,在激光光电对抗、激光遥感、医疗、环境监测及光通讯领域具有重要的应用前景。本文调研了常用的8~12 μm非线性频率变换晶体,以及基于非线性频率变换晶体的远红外光参量振荡器的研究进展,对国内外能实现8~12 μm波段激光输出的非线性晶体及激光系统进行了系统地归纳和总结,通过分析比较得出在8~12 μm波段获得的最大输出能量为毫焦量级,最大功率为瓦量级。国内该技术与国外有着不小的差距,主要受制于高重频、高功率脉冲1~3 μm泵浦源技术不成熟及高性能非线性晶体材料研制基础薄弱,我国在长波远红外固体激光器领域研究进展缓慢,因此研制大尺寸、高质量远红外激光晶体及输出波长更长的远红外高功率激光器已经成为激光器未来发展方向之一。

     

  • 图 1  Cr:ZnSe腔内泵浦CdSe-OPO试验装置图[31]

    Figure 1.  Cr:ZnSe cavity pumped CdSe-OPO experimental setup diagram[12]

    图 2  ZnGeP2-OPO实验装置图[42]

    Figure 2.  Schematic of ZnGeP2-OPO experimental setup[42]

    图 3  Ho:YAG泵浦的多波段三镜环形腔ZnGeP2 OPO试验装置图[44]

    Figure 3.  Ho:YAG pumped three-mirror ring cavity ZnGeP2 OPO experimental setup diagram[44]

    图 4  ZnGeP2 OPO试验装置原理图[47]

    Figure 4.  ZnGeP2 OPO experimental setup principle[47]

    图 5  ZnGeP2-OPO试验装置图[48]

    Figure 5.  Diagram of ZnGeP2-OPO experimental setup[48]

    表  1  常见红外非线性晶体的物理光学特性

    Table  1.   Physical and optical properties of the common infrared nonlinear crystals

    物理与光学特性 晶体
    CdSe GaSe ZnGeP2 AgGaSe2 AgGaS2 AgGa1-xInxSe2
    晶系 六方 六方 四方 四方 四方 四方
    点群 62m 43m 42m 42m 42m 42m
    热导率/(W/cm·K) 0.06 0.162 0.36 0.11 0.015 0.33~0.44
    透光范围/μm 0.75~20 0.65~18 0.74~12 0.7~18 0.5~13 0.7~20
    光学对称性 正单轴 负单轴 正单轴 负单轴 负单轴 负单轴
    折射率(2.05 μm)n0 2.467 7 2.744 9 3.146 4 2.636 6 2.708 6 x的变化而变化
    ne 2.487 4 2.415 9 3.186 5 2.605 6 2.690 4
    损伤阈值/(MW/cm2) 60 28 60-65 25 10 37±4
    损伤脉冲宽度/ns - 150 100 50 20 -
    损伤测试波长/μm - 9.3 10.6 2.05 1.06 -
    非线性系数deff(pm/V) 18 54.4 75 33 13.4 41
    非线性品质因数d2/n3(pm2/V2) 22 127.8 247.8 59.5 13.2 119
    最短泵浦波长/μm 2.37 1.3 1.7 1.27 1.06 1.06
    下载: 导出CSV
  • [1] HERBST R L, BYER R L. Efficient parametric mixing in CdSe[J]. Appl.Phy. Lett., 1971, 19(12):527-530. doi: 10.1063/1.1653800
    [2] DAS S, BHAR G C, GANGOPADHYAY S, et al.. Linear and nonlinear optical properties of ZnGeP2 crystal for infrared laser device applications:revisited[J]. Applied Optics, 2003, 42(21):4335-4340. doi: 10.1364/AO.42.004335
    [3] 李海速, 刘在洲, 郑建奎, 等.高功率中红外MgO:PPLN光参量振荡器[J].光学与光电技术, 2015, 13(1):64-67. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201501015

    LIU H S, LIU Z Z, ZHENG J K, et al.. High power mid-infrared MgO:PPLN optical parametric oscillator[J]. Optics & Optoelectronic Technology, 2015, 13(1):64-67.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201501015
    [4] 王岩, 杨小虎, 王金玲, 等.空间遥感光谱仪器光学性能地面检测系统[J].液晶与显示, 2017, 32(3):206-212. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703007

    WANG Y, YANG X H, WANG J L, et al.. Ground testing system for detecting optical performance of space remote sensing spectrometer[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3):206-212.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703007
    [5] BJORKHOLM J E. Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators[J]. IEEE Journal of Quantum Electronics, 1971, 7(3):109-118. doi: 10.1109/JQE.1971.1076610
    [6] 王君立, 尹福昌, 宋正勋, 等.高稳定输出功率的全固态激光器[J].发光学报, 2011, 32(8):830-833. http://d.old.wanfangdata.com.cn/Periodical/fgxb201108016

    WANG J L, YIN F CH, SONG ZH X, et al.. An all-solid-state laser with high stability output power[J]. Chinese Journal of Luminescence, 2011, 32(8):830-833.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201108016
    [7] 肖庆华, 林家娟, 刘强, 等.914 nm LD泵浦的基模振荡器设计[J].光学与光电技术, 2015, 13(5):38-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxygdjs201505009

    XIAO Q H, LIN J J, LIU Q, et al.. Design of a fundamental mode oscillator pumped by 914 nm LD[J]. Optics & Optoelectronic Technology, 2015, 13(5):38-40.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxygdjs201505009
    [8] YAO B Q, LI G, MENG P B, et al.. High power diode-pumped continuous wave and Q-switch operation of Tm, Ho:YVO4, laser[J]. Laser Physics Letters, 2010, 7(12):857-861. doi: 10.1002/lapl.v7.12
    [9] FUKUMOTO J M. Three-stage optical parametric oscillator conversion from 1μm to the 8-10μm region[J]. Proc. of ASSL, 2002, 68:558-562.
    [10] ABDI F, AILLERIE M, FONTANA M D, et al.. Study of contributions to temperature dependence of the phase shift in an electro-optic crystal[J]. Optical and Quantum Electronics, 1997, 29(4):441-450.(in Chinese) doi: 10.1023/A:1018547331718
    [11] 岱钦, 毛有明, 吴凯旋, 等.脉冲激光测距中高速精密时间间隔测量研究[J].液晶与显示, 2015, 30(1):83-87. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201501013

    DAI Q, MAO Y M, WU K X, et al.. High speed and high precision time-interval measurement system in pulsed laser ranging[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1):83-87.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201501013
    [12] 李玉瑶, 王菲, 焦正超, 等.高效率LD端面抽运准连续355 nm激光器[J].发光学报, 2014, 35(3):332-336. http://d.old.wanfangdata.com.cn/Periodical/fgxb201403012

    LI Y Y, WANG F, JIAO ZH CH, et al.. High efficient LD end-pumped QCW 355 nm laser[J]. Chinese Journal of Luminescence, 2014, 35(3):332-336.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201403012
    [13] 岱钦, 史瑞新, 崔建丰, 等.脉冲LD泵浦电光调Q深紫外激光器[J].发光学报, 2016, 37(4):463-466. http://d.old.wanfangdata.com.cn/Periodical/fgxb201604014

    DAI Q, SHI R X, CUI J F, et al.. Pulse LD pumped EO-Q switched DUV laser[J]. Chinese Journal of Luminescence, 2016, 37(4):463-466.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201604014
    [14] 彭超, 刘学胜, 司汉英, 等.多波长半导体激光阵列端泵Nd:YAG脉冲激光器[J].发光学报, 2018, 39(2):162-168. http://d.old.wanfangdata.com.cn/Periodical/fgxb201802009

    PENG CH, LIU X SH, SI H Y, et al.. Multi-color laser diode array end-pump Nd:YAG pulsed laser[J]. Chinese Journal of Luminescence, 2018, 39(2):162-168.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201802009
    [15] 刘学胜, 董剑, 徐爱东, 等.双程放大740 mJ TEC冷却LD泵浦Nd:YAG激光器[J].发光学报, 2018, 39(7):991-996. http://d.old.wanfangdata.com.cn/Periodical/fgxb201807015

    LIU X SH, DONG J, XU A D. Two-pass amplifier 740 mJ diode-pumped Nd:YAG laser with thermoelectric cooler[J]. Chinese Journal of Luminescence, 2018, 39(7):991-996.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201807015
    [16] 欧阳爱国, 张宇, 程梦杰, 等.中红外光谱技术对乙醇汽油乙醇含量的检测[J].中国光学, 2017, 10(6):752-759. http://www.chineseoptics.net.cn/CN/abstract/abstract9536.shtml

    OUYANG A G, ZHANG Y, CHENG M J, et al.. Determination of the content of ethanol in ethanol gasoline using mid-infrared spectroscopy[J]. Chinese Journal of Optics, 2017, 10(6):752-759.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9536.shtml
    [17] ELSAESSER T, SEILMEIER A, KAISER W, et al.. Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals[J]. Applied Physics Letters, 1984, 44(4):383-385. doi: 10.1063/1.94782
    [18] FUKUMOTO J M. Three-stage optical parametric oscillator conversion from 1μm to the 8-12μm Region[C]. Trends in Optics and Photonics Series, 2002.
    [19] ALLIK T H. Recent advances in continuously tunable 8-12μm radiation using optical parametric oscillators[J]. Proceedings of SPIE, 1997, 3082:54-64. doi: 10.1117/12.280935
    [20] SNELL K J. Efficient optical parametric oscillator with photon recycling: EP, US6985282[P]. 2006.
    [21] FINSTERBUSCH K, BAYER A, ZACHARIAS H. Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 2004, 79(4):457-462. doi: 10.1007/s00340-004-1581-8
    [22] DAVID N N P D. Nonlinear Optical Crystals: A Complete Survey[M]. Springer New York, 2005.
    [23] ALLIK T H, CHANDRA S, RINES D M, et al.. Tunable 7-12μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Opt. Lett., 1997, 22(9):597-599. doi: 10.1364/OL.22.000597
    [24] ISYANOVA Y, DERGACHEV A, WELFORD D, et al.. Multi-wavelength, 1.5-10μm tunable, tandem OPO[C]. Proc. of ASSL, 1999, 26: WB4.
    [25] CARRIG T, RAWLE C B, MCKINNIE I T, et al.. Dual-band Cr: ZnSe laser pump-tuned OPOs[C]. Nonlinear Optics: Materials, Fundamentals and Applications, OSA Trends in Optics and Photonics(Optical Society of America, 2002).
    [26] WATSON M A, O'CONNOR M V, LLOYD P S, et al.. Extended operation of synchronously pumped optical parametric oscillators to longer idler wavelengths[J]. Optics Letters, 2002, 27(23):2106-2108. doi: 10.1364/OL.27.002106
    [27] WATSON M A, O'CONNOR M V, SHEPHERD D P, et al.. Synchronously pumped CdSe optical parametric oscillator in the 9-10 microm region.[J]. Optics Letters, 2003, 28(20):1957-1959. doi: 10.1364/OL.28.001957
    [28] MANI A A, PEREMANS A, GEWIRTH A A, et al.. Picosecond laser for performance of efficient nonlinear spectroscopy from 10-21μm[J]. Optics Letters, 2004, 29(29):274-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cfd4a87e2ab11ba22b89000676574a6
    [29] SHORI R K. Recent developments in scaling output energy from erbium-based lasers and their uses as pump sources for NMR & LWIR OPOs[C]. 17th Annual Meeting of the IEEE-lasers-and-Electro-Optics-Society, Rio Grande, PR, 2004: 805-806.
    [30] GODARD A, RAYBAUT M, LAMBERT O, et al.. Cross-resonant optical parametric oscillators:study of and application to difference-frequency generation[J]. Journal of the Optical Society of America B, 2005, 22(9):1966-1978. doi: 10.1364/JOSAB.22.001966
    [31] ZAKEL A, WAGNER G J, ALFORD W J, et al.. High-power, rapidly-tunable dual-band CdSe optical parametric oscillator[C]. Proc. of ASSP, 2005: 433-437.
    [32] YAO B Q, LI G, ZHU G L, et al.. Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators[J]. Chinese Physics B, 2012, 21(3):262-267. http://www.cqvip.com/QK/85823A/201203/41287224.html
    [33] YUAN J H, DUAN X M, YAO B Q, et al.. Tunable 10-11μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho:YAG laser[J]. Applied Physics B, 2016, 122(7):1-4.
    [34] VODOPYANOV K L. Traveling wave mid-IR ZnGeP2 and GaSe optical parametric generators and their spectroscopic applications[C]. Photonics West. International Society for Optics and Photonics, 1995.
    [35] VODOPYANOV K L, GANIKHANOV F, MAFFETONE J P, et al.. ZnGeP2 optical parametric oscillator with 3.8-12.4μm tunability[J]. Opt. Lett., 2000, 25(11):841-843. doi: 10.1364/OL.25.000841
    [36] VODOPYANOV K L, GANIKHANOV F, MAFFETONE J P, et al.. ZGP OPO with a 3.8-12.4μm tunability[C]. Lasers and Electro-Optics. IEEE Xplore, 2000: 14-15.
    [37] VODOPYANOV K L, SCHUNEMANN P G. Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold[J]. Opt. Lett., 2003, 28(6):441-443. doi: 10.1364/OL.28.000441
    [38] BAI Y, YU J, BARNES N P, et al.. Tunable mid-infrared coherent source for lidar:CW OPO[J]. Proc Spie, 2003, 5154:46-51. doi: 10.1117/12.509373
    [39] HAIDAR S, NIWA E, MASUMOTO K, et al.. Temperature tuning of 5-12μm by difference frequency mixing of OPO outputs in a AgGaS2 crystal[J]. Journal of Physics D-Applied Physics, 2003, 36(9):1071-1074. doi: 10.1088/0022-3727/36/9/304
    [40] HAIDAR S, MIYAMOTO K, ITO H. Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator[J]. Optics Communications, 2004, 241(1-3):173-178. doi: 10.1016/j.optcom.2004.06.065
    [41] HAIDAR S, SASAKI Y, ITO H, et al.. Electro-optic tuning of a periodically poled LiNbO3 optical parametric oscillator and mixing its output waves to generate mid-IR tunable from 9.4-10.5μm[J]. Optics Communications, 2004, 229(1-6):325-330. doi: 10.1016/j.optcom.2003.10.034
    [42] LIPPERT E, RUSTAD G, ARISHOLM G, et al.. High power and efficient long wave IR ZnGeP2 parametric oscillator[J]. Optics Express, 2008, 16(18):13878-13884. doi: 10.1364/OE.16.013878
    [43] LIPPERT E, FONNUM H, STENERSEN K. High power multi-wavelength infrared source[J]. Proc. of SPIE, 2010, 7836:78360D-1. doi: 10.1117/12.882094
    [44] 巩马理, 韩凯.10.6微米激光频率上转换研究[J].激光杂志, 1986(1):8-10. http://www.cqvip.com/Main/Detail.aspx?id=21199179

    GONG M L, HAN K. Investigation on the frequency up-convertion of 10.6μm laser[J]. Laser Jouranal, 1986(1):8-10.(in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=21199179
    [45] KAI Z, J S L, D G X, et al.. Tunable and coherent nanosecond 7.2-12.2μm mid-infrared generation based on difference frequency mixing in ZnGeP2 crystal[J]. Optoelectronics Letters, 2010, 6(3):179-182. doi: 10.1007/s11801-010-9267-4
    [46] STOEPPLER G, THILMANN N, EICHHORN M, et al.. Mid-infrared cascaded parametric source in 6μm region for medical applications[C]. Conference on Lasers and Electro-Optics. IEEE, 2013: 1-2.
    [47] YU K, LIANG Z, YAN X. Experimental studies on beam quality-improving of 8μm ZGP optical parametric oscillator[C] International Conference on Optoelectronics and Microelectronics. IEEE, 2016: 34-37.
    [48] QIAN C P, SHEN Y J, YAO B Q, et al.. High power far-infrared ZGP OPO laser[C]. Lasers and Electro-Optics. IEEE, 2016: ATh3J.6.
    [49] 马力, 李勇, 左腾, 等. 1.3~5μm宽波段红外成像光学系统设计[J].光学与光电技术, 2017, 15(6):73-76. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201706014

    MA L, LI Y, ZUO T, et al.. Design of 1.3~5μm wide band infrared imaging optical system[J]. Optics & Optoelectronic Technology, 2017, 15(6):73-76.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201706014
    [50] 刘峰奇.量子级联激光器:从中红外到太赫兹[J].光学与光电技术, 2017, 15(5):1-5. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201205011

    LIU F Q. Quantum cascade lasers:from mid-infrared to terahertz[J]. Optics & Optoelectronic Technology, 2017, 15(5):1-5.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201205011
    [51] RAFFY J, DEBUISSCHERT T, POCHOLLE J P, et al.. AgGaSe2 OPO pumped by a LiNbO3 OPO[C]. Optical Society of America Advanced Solid State Lasers, 1993.
    [52] BUDNI P A, KNIGHTS M G, SCHEPLER K L, et al.. Kilohertz AgGaSe2 optical parametric oscillator pumped at 2μm[J]. Optics Letters, 1993, 18(13):1068-1070. doi: 10.1364/OL.18.001068
    [53] CHANDRA S, ALLIK T H, CATELLA G, et al. Continuously tunable, 6-14μm silver-gallium selenide optical parametric oscillator pumped at 1.57μm[J]. Applied Physics Letters, 1997, 71(5):584-586. doi: 10.1063/1.119920
    [54] ALLIK T H, CHANDRA S, RINES D M, et al.. Tunable 7-12μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Opt. Lett., 1997, 22(9):597-599. doi: 10.1364/OL.22.000597
    [55] SCHUNERMANN P G. Recent advances in nonlinear materials for 5-20μm wavelength generation[C]. Lasers and Electro-Optics, IEEE, 2000: 353-354.
    [56] KATO K, TAKAOKA E, UMEMURA N, et al.. Temperature-tuned type-290° phase-matched SHG of CO2 laser radiation at 9.2714-10.5910μm in CdGe(As1-xPx)2[J]. Filtration Industry Analyst, 2000.
    [57] EHRLICH Y, FASTIG S, PEARL S. Compact high-performance tandem optical parametric oscillator for the 8-12μm band[J]. Proceedings of SPIE, 2001, 4484:311-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026430691
    [58] HAIDAR, NIWA E, MASUMOTO K, ITO H. Temperature tuning of 5-12μm by difference frequency mixing of OPO outputs in a AgGaS2 crystal[J]. J. Phys. D:Appl. Phys., 2003, 36(9):1071-1074 doi: 10.1088/0022-3727/36/9/304
    [59] BADIKOV VV. Nonlinear frequency generation and conversion: materials, devices, and Applications Ⅱ[C]. Proceedings of SPIE, 2003, 4972: 139-144
    [60] HAIDAR S, SASAKI Y, NIWA E, et al. Electro-optic tuning of a periodically poled LiNbO3 optical parametric oscillator and mixing its output waves to generate mid-IR tunable from 9.4-10.5μm[J]. Optics Communications, 2004, 229(1-6):325-330 doi: 10.1016/j.optcom.2003.10.034
    [61] BADIKOV V V. Study of nonlinear-optical characteristics of AgGa1-xInxSe2 crystals[J]. Quantum Electronics, 2005, 35(3):263-267. doi: 10.1070/QE2005v035n03ABEH002795
    [62] 吴海信, 张维, 石奇, 等.红外非线性晶体材料AgGa1-xInxSe2的生长和性能表征[J].人工晶体学报, 2005, 34(3):408-411. doi: 10.3969/j.issn.1000-985X.2005.03.006

    WU H X, ZHANG W, SHI Q, et al.. Growth and characterization of IR nonlinear AgGa1-xInxSe2 crystals[J]. Journal of Synthetic Crystals, 2005, 34(3):408-411.(in Chinese) doi: 10.3969/j.issn.1000-985X.2005.03.006
    [63] VAICIKAUSKAS V, KUPRIONIS Z, KAUCIKAS M, et al.. Mid-infrared all solid state DIAL for remote sensing of hazardous chemical agents[C]. Conference on Laser Radar Technology and Applications XI, SPIE, 2006, 6214: E2140~E2140.
    [64] 吴海信, 石奇, 张维, 等.新型AgGa1-xInxSe2晶体用于CO2激光倍频研究[J].人工晶体学报, 2006, 35(1):85-90. doi: 10.3969/j.issn.1000-985X.2006.01.019

    WU H X, SHI Q, ZHANG W, et al.. Study on frequency doubling of CO2 laser radiation in new AgGa1-xInxSe2 crystals[J]. Journal of Synthetic Crystals, 2006, 35(1):85-90.(in Chinese) doi: 10.3969/j.issn.1000-985X.2006.01.019
    [65] BAI Y, YU J, BARNES N P, et al. Synthesis of AgGa1-xInxSe2 polycrystalline materials[J]. Journal of Rare Earth, 2006, 24(z1):269-271. http://www.cqvip.com/qk/84120x/2006z1/1000213022.html
    [66] VIJAYAKUMAR P, BABU G A, RAMASAMY P. Growth and physical characterization of AgGa1-xInxSe2, (x=0.5) single crystals grown by modified vertical Bridgman method[J]. Journal of Crystal Growth, 2014, 389(3):139-143. http://www.sciencedirect.com/science/article/pii/S0022024813008580
    [67] 姬广举, 齐迹, 靳添博, 等.掺杂晶体AgGa(1-x)InxSe2的群速失配对频率转换的影响[J].哈尔滨理工大学学报, 2008, 13(2):112-115. doi: 10.3969/j.issn.1007-2683.2008.02.031

    JI G J, QI J, JIN T B, et al.. Influence of group velocity mismatch on the frequency conversion of AgGa(1-x)InxSe2[J]. Journal Harbin Univ.Sci & Tech., 2008, 13(2):112-115.(in Chinese) doi: 10.3969/j.issn.1007-2683.2008.02.031
    [68] 白云昌, 孙峰, 刘在洲, 等. Ho:YAG激光泵浦的磷锗锌光参量振荡器[J].光学与光电技术, 2016, 14(4):44-47. http://d.old.wanfangdata.com.cn/Periodical/gncl201217004

    BAI Y CH, SUN F, LIU Z ZH, et al.. ZnGeP2 optical parametric oscillator pumped by Ho:YAG laser[J]. Optics & Optoelectronic Technology, 2016, 14(4):44-47.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gncl201217004
    [69] 王玉坤, 贾娜, 张锐.激光通信成像光斑处理方法研究[J].液晶与显示, 2017, 32(9):736-740. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010

    WANG Y K, JIA N, ZHANG R, et al.. Laser communication spots imaging process method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9):736-740.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010
    [70] 杨成龙, 颜昌翔, 杨宇飞.星间激光通信终端光学天线的隔离度[J].中国光学, 2017, 10(4):462-468. http://www.chineseoptics.net.cn/CN/abstract/abstract9443.shtml

    YANG CH L, YAN CH X, YANG Y F, et al.. Isolation of optical antenna of inter-satellites laser communication terminals[J]. Chinese Optics, 2017, 10(4):462-468.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9443.shtml
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2391
  • HTML全文浏览量:  790
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 修回日期:  2018-02-28
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回