留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间激光通信最新进展与发展趋势

高铎瑞 李天伦 孙悦 汪伟 胡辉 孟佳成 郑运强 谢小平

高铎瑞, 李天伦, 孙悦, 汪伟, 胡辉, 孟佳成, 郑运强, 谢小平. 空间激光通信最新进展与发展趋势[J]. 中国光学(中英文), 2018, 11(6): 901-913. doi: 10.3788/CO.20181106.0901
引用本文: 高铎瑞, 李天伦, 孙悦, 汪伟, 胡辉, 孟佳成, 郑运强, 谢小平. 空间激光通信最新进展与发展趋势[J]. 中国光学(中英文), 2018, 11(6): 901-913. doi: 10.3788/CO.20181106.0901
GAO Duo-rui, LI Tian-lun, SUN Yue, WANG Wei, HU Hui, MENG Jia-cheng, ZHENG Yun-qiang, XIE Xiao-ping. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. doi: 10.3788/CO.20181106.0901
Citation: GAO Duo-rui, LI Tian-lun, SUN Yue, WANG Wei, HU Hui, MENG Jia-cheng, ZHENG Yun-qiang, XIE Xiao-ping. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. doi: 10.3788/CO.20181106.0901

空间激光通信最新进展与发展趋势

基金项目: 

国家自然科学基金 61231012

国家自然科学基金 91638101

详细信息
    作者简介:

    高铎瑞(1989-), 男, 吉林蛟河人, 硕士, 助理研究员, 2015年于长春理工大学获得硕士学位, 主要从事空间激光通信技术等方面的研究。E-mail:gaoduorui@opt.ac.cn

    李天伦(1991—),女,四川成都人,硕士,助理研究员,2016年于上海交通大学获得硕士学位,主要从事相干激光通信技术等方面的研究。E-mail:tiantian-angel@sjtu.edu.cn

  • 中图分类号: TN929.1

Latest developments and trends of space laser communication

Funds: 

National Natural Science Foundation of China 61231012

National Natural Science Foundation of China 91638101

More Information
  • 摘要: 空间激光通信凭借其带宽优势,成为未来高速空间通信不可或缺的有效手段,是近年来国际上的研究热点。本文详细介绍了美国、欧洲和日本在空间激光通信技术领域的最新研究进展和未来发展规划,总结了国内外空间激光通信演示计划的主要参数指标。通过对空间激光通信最新研究计划的分析,归纳出空间激光通信高速化、深空化、集成化、网络化、一体化5个发展趋势,以及需要突破的高阶调制、高灵敏度探测、多制式兼容、"一对多"通信等关键技术。为我国激光通信设备及相关研究提供借鉴和参考。

     

  • 图 1  LCRD任务结构图

    Figure 1.  Block diagram of LCRD mission

    图 2  有效载荷单元子系统

    Figure 2.  Payload element subsystems

    图 3  LCRD各单元实物图

    Figure 3.  Images of LCRD parts

    图 4  ILLUMA-T演示示意图及终端图片

    Figure 4.  ILLUMA-T demonstration and laser communication terminal

    图 5  深空光通信(DSOC)演示架构示意图

    Figure 5.  Deep space optical communications(DSOC) architecture

    图 6  EDRS演示系统与EDRS-A接收的图片

    Figure 6.  EDRS demonstration system and EDRS-A receiving image

    图 7  OPTEL-μ演示系统

    Figure 7.  OPTEL-μ demonstration system

    图 8  OH设计图

    Figure 8.  Optical head design

    图 9  EU设计图

    Figure 9.  Electronics board configuration

    图 10  激光发射模块和光放大模块设计图

    Figure 10.  Pulsed laser transmitter and optical fiber amplifier design

    图 11  OPTEL-D演示系统

    Figure 11.  OPTEL-D demonstration system

    图 12  OPTEL-D终端原理设计图及CPA结构图

    Figure 12.  Design schematic of OPTEL-D terminal and configuration of CPA

    图 13  JDRS演示系统示意图

    Figure 13.  JDRS demonstration system

    图 14  HICALI演示系统示意图

    Figure 14.  HICALI demonstration system

    图 15  空间激光通信高速化示意图

    Figure 15.  Schematic of high-speed space laser communication development

    表  1  空间激光通信演示计划

    Table  1.   Space laser communication demonstrations timeline

    美国 欧洲 日本 中国
    过去空间激光通信试验 ●1995:GOLD(NASA JPL), GEO-GND, 0.8/0.5 μm, IMDD, 1 Mbps;
    ● 2001: GeoLITE(NRO), GEO-GND
    ● 2013:LRO(NASA GSFC), Lunar-GND, 1 064.3 nm, PPM, 300 bps;
    ● 2013:LLCD(NASA GSFC), Lunar-GND, 1 550 nm, PPM, 622 Mbps;
    ● 2014:OPALS(NASA JPL), ISS-GND, 1 550 nm, IMDD, 30~50 Mbps;
    ●2001:SILEX(ESA), GEO-LEO, GEO-GND, 0.8 μm, IMDD, 50 Mbps;
    ●2006:LOLA(ESA), GEO-Air, 0.8 μm, IMDD, 50 Mbps;
    ●2008:NFIRE(DLR), LEO-LEO, LEO-GND, 1 064 nm, BPSK, 5.6 Gbps;
    ●2016:EDRS-A(ESA), GEO-LEO, GEO-GND, 1 064 nm, BPSK, 1.8 Gbps
    ●1994: ETS-VI(NICT), GEO-GND, 0.8/0.5 μm, IMDD, 1 Mbps
    ●2006: OICETS(JAXA/NICT), LEO-GEO, LEO-GND, 0.8 μm, IMDD, 50 Mbps;
    ●2014: SOTA(NICT), LEO-GND, 980/1 550 nm, IMDD, 10 Mbps
    ●2011:海洋2号(哈工大), LEO-GND, 1 550 nm, IMDD, 504 Mbps;
    ●2016:墨子号(上海光机所),LEO-GND,1 550 nm, DPSK/PPM, 5.12 G/20 Mbps;
    ●2016:天宫二号(武汉大学),LEO-GND,1 550 nm, IMDD, 1.6 Gbps;
    ●2017:实践十三号(哈工大), GEO-GND,1 550 nm, IMDD, 2.5 Gbps
    未来计划 ●2019:LCRD(NASA GSFC), GEO-GND, 1 550 nm, DPSK/PPM, 2.8 G/622 Mbps;
    ●2021:ILLUMA-T(NASA GSFC), LEO-GEO-GND, 1 550 nm, DPSK/PPM, 2.8 G/622 Mbps;
    ●2023:DSOC(NASA JPL), Mars-GND, 1 060/1 550 nm, PPM, 2k/264 Mbps
    ●2018:EDRS-C(ESA), GEO-LEO, GEO-GND, 1 064 nm, BPSK, 1.8 Gbps;
    ●2018:OPTEL-μ(RUAG), LEO-GND, 1 550 nm, IMDD, 2 Gbps;
    ●2020:OPTEL-D(ESA), Deep space-GND, 1 064/1 550 nm, PPM, 192 kMbps
    ●2018: VSOTA(NICT), LEO-GND, 980/1 550 nm, IMDD, 1k/100 kbps;
    ●2019:JDRS(JAXA/ NICT), GEO-GND, 1 550 nm, DPSK/ IMDD, 1.8 G/50 Mbps;
    ●2021:HICALI(NICT), GEO-GND,1 550 nm, 10 Gbps
    下载: 导出CSV

    表  2  AIM光通信系统的主要参数

    Table  2.   Key design parameters of AIM optical communication system

    参数 地面站 AIM
    海拔 2 393 m 7 500~1 500万千米
    接收孔径 1 016 mm 135 mm
    接收波长 1 550 nm 1 064 nm
    接收滤波器带宽 5 nm 5 nm
    接收端有效焦距 13 300 mm 135 mm
    发射波长 1 064 nm 1 550 nm
    发射孔径 250 mm 135 mm
    发射信号制式 NA 16 PPM
    发射速率 None 195 kpbs
    发射功率 2.4 kW 3 W
    下载: 导出CSV

    表  3  JDRS和光学数据中继系统技术规格

    Table  3.   Specifications of JDRS and optical data relay system

    分系统 参数 规格
    JDRS 运载火箭 H-IIA
    发射年份 2019年
    卫星轨道位置 90.75°E
    任务期限 10年
    数据中继系统 速率 返向1.8 Gbps,前向50 Mbps
    误码率* 返向1E-5,前向1E-6
    LEO卫星 高度200~1 000 km
    光学链路 波长 返向1 540 nm,前向1 560 nm
    调制/解调 返向RZ-DPSK-DD,前向IM/DD
    捕获时间 <60 s
    光学天线口径 GEO:15 cm,LEO:10 cm
    馈线链路 频率 Ka波段
    调制/解调 返向16QAM,前向QPSK
    复用方式 频率或偏振(返回连路)
    *光链路和馈线链路的总误码率.
    下载: 导出CSV
  • [1] STEVEN C, LAURA E E, MARK L S, et al.. Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration[J]. Proc. of SPIE, 2011, 7923:792308. doi: 10.1117/12.878927
    [2] SUN X L, DAVID R S, EVAN D H, et al.. Free space laser communication experiments from earth to the lunar reconnaissance orbiter in lunar orbit[J]. Optics Express, 2013, 21(2):1865-1871. doi: 10.1364/OE.21.001865
    [3] ROBERTS W T. Discovery deep space optical communications(DSOC) transceiver[J]. Proc. of SPIE, 2017, 10096:VNSP100960V. doi: 10.1117/12.2256001
    [4] 姜会林, 安岩, 张雅琳, 等.空间激光通信现状、发展趋势及关键技术分析[J].飞行器测控学报, 2015, 34(3):207-217. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201503001

    JIANG H L, AN Y, ZHANG Y L, et al.. Analysis of the status quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT&C Technology, 2015, 34(3):207-217.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201503001
    [5] 吴从均, 颜昌翔, 高志良.空间激光通信发展概述[J].中国光学, 2013, 6(5):670-680. http://www.chineseoptics.net.cn/CN/abstract/abstract9051.shtml

    WU C J, YAN CH X, GAO ZH L. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5):670-680. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9051.shtml
    [6] 曾飞, 高世杰, 伞晓刚, 等.机载激光通信系统发展现状与趋势[J].中国光学, 2016, 9(1):65-73. http://www.chineseoptics.net.cn/CN/abstract/abstract9388.shtml

    ZENG F, GAO SH J, SAN X G, et al.. Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1):65-73.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9388.shtml
    [7] 李少辉, 陈小梅, 倪国强.高精度卫星激光通信地面验证系统[J].光学精密工程, 2017, 25(5):1149-1158. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201705005

    LI SH H, CHEN X M, NI G Q. Highly precise ground certification system of satellite laser communication[J]. Opt. Precision Eng., 2017, 25(5):1149-1158.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201705005
    [8] MORIO T, TETSUHARU F, DIMITAR R K, et al.. Current status of research and development on space laser communications technologies and future plans in NICT[C]. 2015 IEEE International Conference on Space Optical Systems and Applications(ICSOS), New Orleans, LA, USA, 2015: 1-5.
    [9] 于笑楠, 佟首峰, 董岩, 等.空间激光通信组网单光束跟踪子系统[J].光学精密工程, 2014, 22(12):3348-3353. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201412027

    YU X N, TONG SH F, DONG Y, et al. Single beam tracking subsystem of space laser communication network[J]. Opt. Precision Eng., 2014, 22(12):3348-3353.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201412027
    [10] KNUT B, MARK G, FRANK H, et al.. Laser communication terminals for the European Data Relay System[J]. Proc. of SPIE, 2012, 8246:82460D. doi: 10.1117/12.906798
    [11] HERWIG Z, FRANK H, MATTHIAS M. Laser communication terminal: product status and industrialization process[C]. Proc. International Conference on Space Optical Systems and Applications(ICSOS), Kobe, Japan, 2014, S6-3.
    [12] 付强, 姜会林, 王晓曼, 等.空间激光通信研究现状及发展趋势[J].中国光学, 2012, 5(2):116-125. doi: 10.3969/j.issn.2095-1531.2012.02.004

    FU Q, JIANG H L, WANG X M, et al.. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2):116-125.(in Chinese) doi: 10.3969/j.issn.2095-1531.2012.02.004
    [13] 张靓, 郭丽红, 刘向南, 等.空间激光通信技术最新进展与趋势[J].飞行器测控学报, 2013, 32(4):286-293. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201304002

    ZHANG L, GUO L H, LIU X N, et al.. Latest progress and trends of development of space laser communication[J]. Journal of Spacecraft TT&C Technology, 2013, 32(4):286-293.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201304002
    [14] LUZHANSKIY E, EDWARFS B, ISRAEL D, et al.. Overview and status of the laser communication relay demonstration[J]. Free-Space Laser Communication and Atmospheric Propagation XXVⅢ, 2016, 9739:97390C. doi: 10.1117/12.2218182
    [15] JADE P W, BROWNE C A, BURTON C D, et al.. Performance and qualification of a multi-rate DPSK modem[J]. Proc. of SPIE, 2014, 8971:89710Z. doi: 10.1117/12.2057577
    [16] CORNWELL D. Space-based laser communications break threshold[J]. Optics and Photonics News, 2016, 27(5):24-31. doi: 10.1364/OPN.27.5.000024
    [17] BISWAS A, KOVALIK J M, SRINIVASAN M, et al.. Deep space laser communications[J]. Proc. SPIE, 2016, 9739:97390Q. doi: 10.1117/12.2217428
    [18] ROBERTS W T. Discovery deep space optical communications(DSOC) transceiver[J]. Proc. of SPIE, 2017, 10096:100960V-1. doi: 10.1117/12.2276289
    [19] MIGLIORE R, DUNCAN J, PULCINO V, et al.. Outlook on EDRS-C[C]. International Conference on Space Optics 2016, 2017, 10562: 105622S.
    [20] 车晓杰, 梁忠诚, 刘学明.室内MIMO可见光通信的接收特性[J].发光学报, 2016, 37(2):242-249. http://d.old.wanfangdata.com.cn/Periodical/fgxb201602019

    CHE X J, LIANG ZH CH, LIU X M. Receiving characteristics of indoor MIMO visible light communication[J]. Chinese Journal of Luminescence, 2016, 37(2):242-249.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201602019
    [21] BAISTER G, GREGER R, BACHER M, et al.. OPTEL-μ LEO to ground laser communications terminal:flight design and status of the EQM development project[J]. International Conference on Space Optics 2016. International Society for Optics and Photonics, 2017, 10562:105622U. doi: 10.1117/12.2296075
    [22] DREISCHER T, THIEME B, BACHER M, et al.. OPTEL-μ:a compact system for optical downlinks from LEO satellites[J]. Proc. 12th Space Ops, Stockholm, Sweeden, 2012. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212468999/
    [23] HEESE C, SODNIK Z, CARNELLI I. Design of the optical Communication system for the asteroid impact mission[C]. International Conference on Space Optics 2016, 2017, 10562: 105622W.
    [24] YAMAKAWA S, CHISHIKI Y, SASAKI Y, et al.. JAXA's optical data relay satellite programme[C]. 2015 IEEE International Conference on Space Optical Systems and Applications(ICSOS), IEEE, 2015: 1-3.
    [25] CHISHIKI Y, YAMAKAWA S, TAKANO Y, et al.. Overview of optical data relay system in JAXA[J]. Proc. of SPIE, 2016, 9739:97390D-1. doi: 10.1117/12.2239310
    [26] FUSE T, AKIOKA M, KOLEV D, et al.. Development of a breadboard model of space laser communication terminal for optical feeder links from Geo[C]. International Conference on Space Optics 2016. International Society for Optics and Photonics, 2017, 10562: 105622X.
    [27] TOYOSHIMA M, FUSE T, KOLEV D R, et al.. Current status of research and development on space laser communications technologies and future plans in NICT[C]. 2015 IEEE International Conference on Space Optical Systems and Applications(ICSOS) IEEE, 2015: 1-5.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  5635
  • HTML全文浏览量:  2352
  • PDF下载量:  879
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-27
  • 修回日期:  2018-02-14
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回