留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光扫描匹配方法研究综述

宗文鹏 李广云 李明磊 王力 李帅鑫

宗文鹏, 李广云, 李明磊, 王力, 李帅鑫. 激光扫描匹配方法研究综述[J]. 中国光学(中英文), 2018, 11(6): 914-930. doi: 10.3788/CO.20181106.0914
引用本文: 宗文鹏, 李广云, 李明磊, 王力, 李帅鑫. 激光扫描匹配方法研究综述[J]. 中国光学(中英文), 2018, 11(6): 914-930. doi: 10.3788/CO.20181106.0914
ZONG Wen-peng, LI Guang-yun, LI Ming-lei, WANG Li, LI Shuai-xin. A survey of laser scan matching methods[J]. Chinese Optics, 2018, 11(6): 914-930. doi: 10.3788/CO.20181106.0914
Citation: ZONG Wen-peng, LI Guang-yun, LI Ming-lei, WANG Li, LI Shuai-xin. A survey of laser scan matching methods[J]. Chinese Optics, 2018, 11(6): 914-930. doi: 10.3788/CO.20181106.0914

激光扫描匹配方法研究综述

doi: 10.3788/CO.20181106.0914
基金项目: 

国家自然科学基金项目 41274014

国家自然科学基金项目 41501491

详细信息
    作者简介:

    宗文鹏(1990-), 男, 山东济南人, 博士研究生, 2013年于西安交通大学获得学士学位, 2016年于信息工程大学获得硕士学位, 现为信息工程大学地理空间信息学院博士生, 主要从事多传感器组合定位与测图、导航定位与位置服务方面的研究。E-mail:la9881275@163.com

  • 中图分类号: TP24

A survey of laser scan matching methods

Funds: 

National Natural Science Foundation of China 41274014

National Natural Science Foundation of China 41501491

More Information
  • 摘要: 激光扫描匹配是利用激光雷达进行导航、定位与地图构建的基础,本文对各类激光扫描匹配方法进行了综述。将现有方法归纳为基于点的扫描匹配方法、基于特征的扫描匹配方法和基于数学特性的扫描匹配方法3类,系统总结了相应类型的常见方法;对典型的算法及其改进算法进行了梳理,并指出了存在的主要问题和发展趋势;介绍了激光扫描匹配方法性能评价和对比的最新研究进展,最后,展望了激光扫描匹配技术未来的研究方向。

     

  • 图 1  模块化ICP算法流程图

    Figure 1.  Pipeline of modular ICP

    图 2  基于特征的扫描匹配方法流程图

    Figure 2.  Pipeline of the feature-based scan matching method

    图 3  P2D-NDT扫描匹配方法流程图

    Figure 3.  Pipeline of the P2D-NDT based scan matching method

    表  1  典型扫描匹配方法的特点

    Table  1.   Features of typical scan matching methods

    特点 ICP类方法 基于特征的方法 NDT类方法
    是否需要迭代 需要 非必须 需要
    是否需要初值 需要 不需要 需要
    收敛域 /
    运行速度 较快
    能否辅助闭环检测 不能
    鲁棒性 较差 较好
    精度 高,受离群点和噪声影响较大 低,与特征提取精度有关 较高,与体素尺寸密切相关
    适用范围 广 结构化场景 广
    下载: 导出CSV
  • [1] CADENA C, CARLONE L, CARRILLO H, et al.. Past, present, and future of simultaneous localization and mapping:towards the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6):1309-1332. doi: 10.1109/TRO.2016.2624754
    [2] 林辉灿, 吕强, 张洋, 等.稀疏和稠密的VSLAM的研究进展[J].机器人, 2016, 38(5):621-631. http://d.old.wanfangdata.com.cn/Periodical/jqr201605014

    LIN H C, LV Q, ZHANG Y, et al.. The sparse and dense VSLAM:a survey[J]. ROBOT, 2016, 38(5):621-631.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jqr201605014
    [3] 梁明杰, 闵华清, 罗荣华.基于图优化的同时定位与地图创建综述[J].机器人, 2013, 35(4):500-512. http://d.old.wanfangdata.com.cn/Periodical/jqr201304016

    LIANG M J, MIN H Q, LUO R H. Graph-based SLAM:a survey[J]. ROBOT, 2013, 35(4):500-512.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jqr201304016
    [4] CENSI A. Scan matching in a probabilistic framework[C]. IEEE International Conference on Robotics and Automation, 2006: 2291-2296. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1642044
    [5] PARK, KIM D H, PARK M, et al.. Spectral scan matching for robot pose estimation[J]. Electronics Letters, 2009, 45(21):1076-1077. doi: 10.1049/el.2009.1355
    [6] RÖWEKÄMPER J, SPRUNK C, TIPALDI G D, et al.. On the position accuracy of mobile robot localization based on particle filters combined with scan matching[C]. IEEE International Conference on Intelligent Robots and Systems, 2012: 3158-3164. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6385988
    [7] HOUSHIAR H, ELSEBERG J, BORRMANN D, et al.. A study of projections for key point based registration of panoramic terrestrial 3D laser scan[J]. Geo-spatial Information Science, 2015, 18(1):11-31. http://d.old.wanfangdata.com.cn/Periodical/dqkjxxkxxb-e201501002
    [8] PARK S, PARK S K. Spectral scan matching and its application to global localization for mobile robots[C]. IEEE International Conference on Robotics and Automation, 2010: 1361-1366.
    [9] LEHTOLA V V, KAARTINEN H, NÜCHTER A, et al.. Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods[J]. Remote Sensing, 2017, 9(8):796. doi: 10.3390/rs9080796
    [10] FURUKAWA T, DANTANARAYANA L, ZIGLAR J, et al.. Fast global scan matching for high-speed vehicle navigation[C]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2015: 37-42. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7295742
    [11] YOSHITAKA H, HIROHIKO K, AKIHISA O, et al.. Mobile Robot localization and mapping by scan matching using laser reflection intensity of the SOKUIKI sensor[C]. IEEE Conference on Industrial Electronics, 2007: 3018-3023.
    [12] BORRMANN D, ELSEBERG J, KAI L, et al.. Globally consistent 3D mapping with scan matching[J]. Robotics & Autonomous Systems, 2008, 56(2):130-142. http://www.sciencedirect.com/science/article/pii/S0921889007000863
    [13] MARTINEZ J L, GONZALEZ J, MORALES J, et al.. Mobile robot motion estimation by 2D scan matching with genetic and iterative closest point algorithms[J]. Journal of Field Robotics, 2006, 23(1):21-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=450127f45c33d0ef5a2f8cd257b2c91b
    [14] GAO Y, LIU S, ATIA M M, et al.. INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm[J]. Sensors, 2015, 15(9):23286-23302. doi: 10.3390/s150923286
    [15] CHEN Y, MEDIONI G. Object modeling by registration of multiple range images[C]. Proceedings of IEEE International Conference on Robotics and Automation, 1991: 145-155.
    [16] BESL P J, MCKAY H D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. doi: 10.1109/34.121791
    [17] LU F, MILIOS E E. Robot Pose Estimation in unknown environments by matching 2D range scans[J]. Journal of Intelligent and Robotic Systems, 1997, 18(3):249-275. doi: 10.1023/A:1007957421070
    [18] GUTMANN J S, SCHLEGEL C. AMOS: comparison of scan matching approaches for self-localization in indoor environments[C]. Proceedings of the First Euromicro Workshop on Advanced Mobile Robot, 1996: 61-67.
    [19] COX I J. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle[C]. International Conference on Robotics and Automation, 1991, 7(2): 193-204. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/70.75902&rfr_id=trans/tp/2002/02/ttp2002020237.htm
    [20] MINGUEZ J, MONTESANO L, LAMIRAUX F. Metric-based iterative closest point scan matching for sensor displacement estimation[J]. IEEE Transactions on Robotics, 2006, 22(5):1047-1054. doi: 10.1109/TRO.2006.878961
    [21] CAMPBELL D, WHITTY M, LIM S. Mobile 3D indoor mapping using the continuous normal distributions transform[C]. IEEE International Conference on Indoor Positioning and Indoor Navigation, 2012: 1-9.
    [22] BOSSE M C. ATLAS: a framework for large scale automated mapping and localization[D]. Massachusetts Institute of Technology, 2004. http://dl.acm.org/citation.cfm?id=1023391
    [23] CENSI A. An ICP variant using a point-to-line metric[C]. IEEE International Conference on Robotics and Automation, 2008: 19-25. http://ieeexplore.ieee.org/document/4543181/
    [24] BOSSE M, ZLOT R. Continuous 3D scan-matching with a spinning 2D laser[C]. IEEE International Conference on Robotics and Automation, 2009: 4244-4251.
    [25] 李明磊, 李广云, 王力, 等.采用八叉树体素生长的点云平面提取[J].光学精密工程, 2018, 26(1):172-183. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801021

    LI M L, LI G Y, WANG L, et al.. Planar feature extraction from unorganized point clouds using octree voxel-based region growing[J]. Opt. Precision Eng., 2018, 26(1):172-183.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801021
    [26] SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP[C]. Robotics: Science and Systems, 2009, 2(4): 435.
    [27] SERAFIN J, GRISETTI G. Using augmented measurements to improve the convergence of icp[C]. International Conference on Simulation, Modeling, and Programming for Autonomous Robots. Springer, Cham, 2014: 566-577. Using augmented measurements to improve the convergence of icp
    [28] SERAFIN J, GRISETTI G. NICP: dense normal based point cloud registration[C]. IEEE International Conference on Intelligent Robots and Systems, 2015: 742-749.
    [29] LV J, YUKINORI K, RAVANKAR A A, et al.. A solution to estimate robot motion with large rotation by matching laser scans[C]. IEEE Society of Instrument and Control Engineers of Japan, 2015: 1083-1088. http://ieeexplore.ieee.org/document/7285356/
    [30] YANG J, LI H, JIA Y. Go-ICP: solving 3D registration efficiently and globally optimally[C]. IEEE International Conference on Computer Vision. IEEE Computer Society, 2013: 1457-1464.
    [31] HAN J D, YIN P, HE Y Q, et al.. Enhanced ICP for the registration of large-scale 3D environment models:an experimental study[J]. Sensors, 2016, 16(2):228. doi: 10.3390/s16020228
    [32] HONG S, KO H, KIM J. VICP: velocity updating iterative closest point algorithm[C]. IEEE International Conference on Robotics and Automation, 2012: 1893-1898. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5509312
    [33] ALISMAIL H, BAKER L D, BROWNING B. Continuous trajectory estimation for 3D SLAM from actuated lidar[C]. IEEE International Conference on Robotics and Automation, 2014: 6096-6101. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6907757
    [34] RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[C]. Proceedings of IEEE International Conference on 3-D Digital Imaging and Modeling, 2001: 145-152.
    [35] POMERLEAU F, COLAS F, SIEGWART R, et al.. Comparing ICP variants on real-world data sets[J]. Autonomous Robots, 2013, 34(3):133-148. doi: 10.1007/s10514-013-9327-2
    [36] GELFAND N, IKEMOTO L, RUSINKIEWICZ S, et al.. Geometrically stable sampling for the ICP algorithm[C]. Proceedings of IEEE International Conference on 3-D Digital Imaging and Modeling, 2003: 260-267. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1240258
    [37] MONTESANO L, MINGUEZ J, MONTANO L. Probabilistic scan matching for motion estimation in unstructured environments[C]. IEEE International Conference on Intelligent Robots and Systems, 2005: 3499-3504.
    [38] DIOSI A, KLEEMAN L. Laser scan matching in polar coordinates with application to SLAM[C]. IEEE International Conference on Intelligent Robots and Systems, 2005: 3317-3322.
    [39] DIOSI A, KLEEMAN L. Fast laser scan matching using polar coordinates[J]. International Journal of Robotics Research, 2007, 26(10):1125-1153. doi: 10.1177/0278364907082042
    [40] CAI Z S, HONG B R, LI H. An improved polar scan matching using genetic algorithm[J]. Information Technology Journal, 2007, 6(1):89-95. doi: 10.3923/itj.2007.89.95
    [41] CHEN F, CHOPRA I, RAND O. Perimeter-based polar scan matching(PB-PSM) for 2D laser odometry[J]. Journal of Intelligent & Robotic Systems, 2015, 80(2):231-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25d5e73393dd6ea35dfdb9dab8853a36
    [42] TSARDOULIAS E, PETROU L. Critical rays scan match SLAM[J]. Journal of Intelligent & Robotic Systems, 2013, 72(3-4):441-462. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231654603/
    [43] BONNABEL S, BARCZYK M, GOULETTE F, et al.. On the covariance of ICP-based scan-matching techniques[C]. American Control Conference(ACC), 2016: 5498-5503.
    [44] CENSI A. On achievable accuracy for range-finder localization[C]. IEEE International Conference on Robotics and Automation, 2007: 4170-4175. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4209738
    [45] OLSON E B. Real-time correlative scan matching[C]. IEEE International Conference on Robotics and Automation, 2009: 1233-1239.
    [46] ELSEBERG J, MAGNENAT S, SIEGWART R, et al.. Comparison on nearest-neigbour-search strategies and implementations for efficient shape registration[J]. Annual Report of Natural Science & Home Economics Kinjo Gakuin College, 2012, 22(3):268-269.
    [47] NÜCHTER A, KAI L, HERTZBERG J, et al.. 6D SLAM-3D mapping outdoor environments[J]. Journal of Field Robotics, 2007, 24(8-9):699-722. doi: 10.1002/(ISSN)1556-4967
    [48] VERDOJA F, THOMAS D, SUGIMOTO A. Fast 3D point cloud segmentation using supervoxels with geometry and color for 3D scene understanding[C]. IEEE International Conference on Multimedia and Expo. IEEE Computer Society, 2017: 1285-1290.
    [49] JENSFELT P, KRISTENSEN S. Active global localization for a mobile robot using multiple hypothesis tracking[J]. IEEE Transactions on Robotics & Automation, 2001, 17(5):748-760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f0043a8e72e54b429b6fe8810a8e555
    [50] NAKAMURA T, TASHITA Y. Congruence transformation invariant feature descriptor for robust 2D scan matching[C]. IEEE International Conference on Systems, Man, and Cybernetics, 2014: 1648-1653. http://dl.acm.org/citation.cfm?id=2571272.2572330&coll=DL&dl=GUIDE&CFID=420369950&CFTOKEN=21427784
    [51] NAKAMURA T, WAKITA S. Robust global scan matching method using congruence transformation invariant feature descriptors and a geometric constraint between keypoints[J]. Transactions of the Society of Instrument & Control Engineers, 2015, 51(5):309-318. http://europepmc.org/abstract/MED/5610708
    [52] TALEGHANI S, SHARBAFI M A, HAGHIGHAT A T, et al.. ICE matching, a robust mobile robot localization with application to SLAM[C]. IEEE International Conference on TOOLS with Artificial Intelligence. IEEE Computer Society, 2010: 186-192.
    [53] MOHAMED H A, MOUSSA A M, ELHABIBY M M, et al.. Improved real-time scan matching using corner features[C]. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B5: 533-539.
    [54] TIPALDI G D, BRAUN M, ARRAS K O. FLIRT: Interest regions for 2D range data with applications to robot navigation[C]. Experimental Robotics. Springer Berlin Heidelberg, 2014: 695-710.
    [55] TOMBARI F, SALTI S, STEFANO L D. Performance evaluation of 3D keypoint detectors[J]. International Journal of Computer Vision, 2013, 102(1-3):198-220. doi: 10.1007/s11263-012-0545-4
    [56] GUO Y, BENNAMOUN M, SOHEL F, et al.. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 2016, 116(1):66-89. doi: 10.1007/s11263-015-0824-y
    [57] LIU S, ATIA M M, GAO Y, et al.. Adaptive covariance estimation method for LiDAR-aided multi-sensor integrated navigation systems[J]. Micromachines, 2015, 6(2):196-215. doi: 10.3390/mi6020196
    [58] SIADAT A, KASKE A, KLAUSMANN S, et al.. An optimized segmentation method for a 2D laser-scanner applied to mobile robot navigation[C]. IFAC Proceedings, 1997, 30(7): 149-154.
    [59] GRISETTI G, IOCCHI L, NARDI D. Global Hough localization for mobile robots in polygonal environments[C]. Proceedings of IEEE International Conference on Robotics and Automation, 2002(1): 353-358. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1013386
    [60] CENSI A, IOCCHI L, GRISETTI G. Scan matching in the Hough domain[C]. IEEE International Conference on Robotics and Automation, 2006: 2739-2744
    [61] ZEZHONG X, JILIN L, ZHIYU X. Scan matching based on CLS relationships[C]. Proceedings of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003, 1: 99-104. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=WFHYXW83869
    [62] MAZURAN M, AMIGONI F. Matching line segment scans with mutual compatibility constraints[C]. IEEE International Conference on Robotics and Automation(ICRA 2014), 2014: 4298-4303. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6907484
    [63] NUÑEZ P, VÁZQUEZ-MART N R, TORO J C D, et al.. Natural landmark extraction for mobile robot navigation based on an adaptive curvature estimation[J]. Robotics & Autonomous Systems, 2008, 56(3):247-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41e84f4c7adaf4845fbec6a90c6e2beb
    [64] YUAN X, ZHAO C, TANG Z, et al.. Lidar scan-matching for mobile robot localization[J]. Information Technology Journal, 2010, 9(1):27-33. doi: 10.3923/itj.2010.27.33
    [65] LI J, ZHONG R, HU Q, et al.. Feature-based laser scan matching and its application for indoor mapping[J]. Sensors, 2016, 16(8):1265. doi: 10.3390/s16081265
    [66] TOMONO M. A scan matching method using Euclidean invariant signature for global localization and map building[C]. Proceedings of IEEE International Conference on Robotics and Automation, 2004. ICRA. IEEE, 2004: 866-871 Vol.1.
    [67] NOBILI S, SCONA R, CARAVAGNA M, et al.. Overlap-based ICP tuning for robust localization of a humanoid robot[C]. Proceedings of IEEE International Conference on Robotics and Automation, 2017: 4721-4728.
    [68] SERAFIN J, OLSON E, GRISETTI G. Fast and robust 3D feature extraction from sparse point clouds[C]. Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2016: 4105-4112. http://ieeexplore.ieee.org/document/7759604/
    [69] ZHANG J, SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 2017, 41(2):401-416. doi: 10.1007/s10514-016-9548-2
    [70] RUSU R B, BLODOW N, MARTON Z, et al.. Aligning point cloud views using persistent feature histograms[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2008), Sep.2008: 3384-3391.
    [71] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms(FPFH) for 3D registration[C]. IEEE International Conference on Robotics and Automation, 2009: 1848-1853.
    [72] JIANG J, CHENG J, CHEN X. Registration for 3-D point cloud using angular-invariant feature[J]. Neurocomputing, 2009, 72(16):3839-3844. doi: 10.1016-j.neucom.2009.05.013/
    [73] NUÑEZ P, VÁZQUEZMART N R, BANDERA A, et al.. Fast laser scan matching approach based on adaptive curvature estimation for mobile robots[J]. Robotica, 2009, 27(3):469-479. http://journals.cambridge.org/abstract_S0263574708004840
    [74] CHONG Z J, QIN B, BANDYOPADHYAY T, et al.. Synthetic 2D LIDAR for precise vehicle localization in 3D urban environment[C]. IEEE International Conference on Robotics and Automation, 2013: 1554-1559. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6630777
    [75] SHU L, XU H, HUANG M. High-speed and accurate laser scan matching using classified features[C]. IEEE International Symposium on Robotic and Sensors Environments, 2014: 61-66. http://ieeexplore.ieee.org/document/6698419/
    [76] RAMOS F T, FOX D, DURRANT-WHYTE H F. CRF-matching: conditional random fields for feature-based scan matching[C]. Robotics: Science and Systems, 2007.
    [77] RYU H, WAN K C. Efficient scan matching method using direction distribution[J]. Electronics Letters, 2015, 51(9):686-688. doi: 10.1049/el.2014.4034
    [78] SEHGAL A, CERNEA D, MAKAVEEVA M. Real-time scale invariant 3d range point cloud registration[C]. International Conference on Image Analysis and Recognition. Springer-Verlag, 2010: 220-229. http://dl.acm.org/citation.cfm?id=2176924.2176951
    [79] STEDER B, RUSU R B, KONOLIGE K, et al.. NARF: 3D range image features for object recognition[C]. Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IROS), 2010: 44.
    [80] OLSON E. M3RSM: many-to-many multi-resolution scan matching[C]. 2015 IEEE International Conference on Robotics and Automation(ICRA 2015), 2015: 5815-5821.
    [81] RAY R, BANERJI D, NANDY S, et al.. Keypoints based laser scan matching-a robust approach[C]. IEEE International Conference on Robotics and Biomimetics, 2012: 741-746.
    [82] LENAC K, KITANOV A, CUPEC R, et al.. Fast planar surface 3D SLAM using LIDAR[J]. Robotics & Autonomous Systems, 2017, 92:197-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f1613a46b4f8cfd3a3d47ccf6d1d075
    [83] MOHAMED H, MOUSSA A, ELHABIBY M, et al.. A novel real-time reference key frame scan matching method[J]. Sensors, 2017, 17(5):1060-1088. doi: 10.3390/s17051060
    [84] HUANG X, ZHENG B, MASUDA T, et al.. Robust 3D features for matching between distorted range scans captured by moving systems[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014: 2957-2964.
    [85] BIBER P, STRA ER W. The normal distributions transform: a new approach to laser scan matching[C]. Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003), 2003, 3: 2743-2748.
    [86] MAGNUSSON M, LILIENTHAL A, DUCKETT T. Scan registration for autonomous mining vehicles using 3D-NDT[J]. Journal of Field Robotics, 2007, 24(10):803-827. doi: 10.1002/(ISSN)1556-4967
    [87] BIBER P, FLECK S, STRA ER W. A probabilistic framework for robust and accurate matching of point clouds[C]. Joint Pattern Recognition Symposium. Springer, Berlin, Heidelberg, 2004: 480-487. http://www.springerlink.com/content/306ffbk2a4rnyqc8
    [88] MAGNUSSON M. The three-dimensional normal-distributions transform: an efficient representation for registration, surface analysis, and loop detection[D]. rebro University, 2009.
    [89] STOYANOV T D, MAGNUSSON M, ANDREASSON H, et al.. Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations[J]. International Journal of Robotics Research, 2012, 31(12):1377-1393. doi: 10.1177/0278364912460895
    [90] MAGNUSSON M, VASKEVICIUS N, STOYANOV T, et al.. Beyond points: Evaluating recent 3D scan-matching algorithms[C]. IEEE International Conference on Robotics and Automation, 2015: 3631-3637.
    [91] WEI G, PUTTKAMER E. A map based on laser scans without geometric interpretation[C]. Intelligent Autonomous Systems, 1995, 4(2): 403-407.
    [92] KONECNY J, PRAUZEK M, KROMER P, et al.. Novel point-to-point scan matching algorithm based on cross-correlation[J]. Mobile Information Systems, 2016(15):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003970137
    [93] LEORDEANU M, HEBERT M. A spectral technique for correspondence problems using pairwise constraints[C]. IEEE International Conference on Computer Vision. IEEE Computer Society, 2005: 1482-1489. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1544893
    [94] WANG X, JIA Y, XI N, et al.. Mobile robot pose estimation using laser scan matching based on Fourier transform[C]. IEEE International Conference on Robotics and Biomimetics, 2014: 474-479. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6739504
    [95] Kim H, Dugarjav B, Lee K H, et al. A study on scan matching method using procrustes analysis[C]. International Conference on Control, Automation and Systems, 2014: 1027-1030. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6987941
    [96] PEDROSA E, PEREIRA A, LAU N. A scan matching approach to SLAM with a dynamic likelihood field[C]. International Conference on Autonomous Robot Systems and Competitions, 2016: 35-40.
    [97] BOUGHORBEL F, KOSCHAN A, ABIDI B, et al.. Gaussian fields:a new criterion for 3D rigid registration[J]. Pattern Recognition, 2004, 37(7):1567-1571. doi: 10.1016/j.patcog.2004.02.005
    [98] LENAC K, MUMOLO E, NOLICH M. Fast Genetic Scan Matching in Mobile Robotics[M]. Evolutionary Image Analysis and Signal Processing. Springer Berlin Heidelberg, 2009: 133-152.
    [99] KROMER P, KONECNY J, PRAUZEK M. Point-based scan matching by differential evolution[C]. International Conference on Intelligent NETWORKING and Collaborative Systems, 2016: 215-221.
    [100] WULF O, NÜCHTER A, HERTZBERG J, et al.. Benchmarking urban six-degree-of-freedom simultaneous localization and mapping[J]. Journal of Field Robotics, 2008, 25(3):148-163. doi: 10.1002/rob.v25:3
    [101] DU Q H. Metrics for 3D Rotations:Comparison and Analysis[J]. Journal of Mathematical Imaging & Vision, 2009, 35(2):155-164. http://dl.acm.org/citation.cfm?id=1574531
    [102] MAGNUSSON M, NUCHTER A, LORKEN C, et al.. Evaluation of 3D registration reliability and speed-a comparison of ICP and NDT[C]. IEEE International Conference on Robotics and Automation, 2009: 2263-2268. http://dl.acm.org/citation.cfm?id=1703817
    [103] PATHAK K, BORRMANN D, ELSEBERG J, et al.. Evaluation of the robustness of planar-patches based 3D-registration using marker-based ground-truth in an outdoor urban scenario[C]. Ieee/rsj International Conference on Intelligent Robots and Systems, 2010: 5725-5730.
    [104] PATHAK K, BIRK A, VAŠKEVIČIUS N, et al.. Fast registration based on noisy planes with unknown correspondences for 3-D mapping[J]. IEEE Transactions on Robotics, 2010, 26(3):424-441. doi: 10.1109/TRO.2010.2042989
    [105] LI Q, M LLER F, WENZEL A, et al.. Simulation-based comparison of 2D scan matching algorithms for different rangefinders[C]. 201621st International Conference on Methods and Models in Automation and Robotics(MMAR), 2016: 924-929. http://ieeexplore.ieee.org/abstract/document/7575261/
    [106] ELBAZ G, AVRAHAM T, FISCHER A. 3D point cloud registration for localization using a deep neural network auto-encoder[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017), 2017: 2472-2481. http://ieeexplore.ieee.org/document/8099748/
    [107] BEDKOWSKI J M, RÖHLING T. Online 3D LIDAR Monte Carlo localization with GPU acceleration[J]. Industrial Robot, 2017, 44(4). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36434d2fa5393edb2ff0860e3ce11c3d
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  12966
  • HTML全文浏览量:  1857
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 修回日期:  2018-02-02
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回