Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber
doi: 10.3788/CO.20181106.0958
-
摘要: 耦合效率的高低与耦合后光斑的好坏直接影响着光子晶体光纤棒的放大效果,因此需要对种子光的耦合效果进行研究,选择合适的激光器作为种子源。本文对光子晶体光纤棒在固体激光器与光纤激光器两种情况下的耦合效率进行了理论分析;模拟计算了两种激光器情况下耦合效率的变化规律以及对准误差对耦合效率的影响;选择合适的透镜或透镜组,使用两种激光器对光子晶体光纤棒进行了耦合实验;对比两种激光器的耦合效果可知:固体激光器的耦合效率最高只能达到62.4%,而光纤激光器的耦合效率可以达到80%以上;在光纤激光器耦合情况下,对不同功率注入时耦合效率,以及耦合后光斑进行了实验分析。得到的实验结果对后续光纤棒的放大实验具有指导作用。Abstract: The high or low coupling efficiency and the good or bad coupling facula directly affect the amplification effect of the Rod-type photonic crystal fiber. Therefore, it is necessary to research the coupling effect of seed light and choose a suitable laser as a seed source. In this paper, the coupling efficiency of Rod-type photonic crystal fibers in a solid-state laser and a fiber laser was theoretically analyzed. The changing regulation of the coupling efficiency and the effect of the alignment error on the coupling efficiency were calculated with two different lasers. A suitable lens or group of lenses were selected and an experiment was conducted to couple the solid-state laser beam and the fiber laser beam to the Rod-type photonic crystal fiber. Compared with the coupling effect of the two kinds of lasers, the maximum coupling efficiency of the solid laser is only 62.4%, while the coupling efficiency of the fiber laser is more than 80%. In the case of fiber laser coupling, the coupling efficiency at different power injection and the coupling facula were analyzed. The experimental results will guide the amplification experiment of the Rod-type photonic crystal fiber.
-
Key words:
- rod-type photonic crystal fiber /
- solid-state laser /
- fiber laser /
- coupling efficiency
-
表 1 Basic parameters of the solid-state laser
Table 1. Basic parameters of the solid-state laser
Parameter Name Parameter Value Parameter Name Parameter Value Output Power 1~4.5 W Output Waist Diameter 800 μm M2 ~1.2 Wavelength 1 030 nm 表 2 Basic parameters of fiber laser
Table 2. Basic parameters of fiber laser
Parameter Name Parameter Value Parameter Name Parameter Value Output Power 1~6 W Output tail Fiber Core Diameter 25 μm M2 ~1.1 Wavelength 1 030 nm 表 3 Comparison of coupling efficiency under low power conditions
Table 3. Comparison of coupling efficiency under low power conditions
Laser type Injected power/mW Transmitted power/mW Coupling efficiency/% Solid State 100.1 42.3 42.2 Optical Fiber 1 000 600 60.0 表 4 Comparison of coupling efficiency under medium power conditions
Table 4. Comparison of coupling efficiency under medium power conditions
Laser type Injected power/mW Transmitted power/mW Coupling efficiency/% Solid State 4.20 2.62 62.4 Optical Fiber 4.00 3.22 80.5 表 5 Transmission power and coupling efficiency vary with injection power
Table 5. Transmission power and coupling efficiency vary with injection power
Injected power/W Transmitted power/W Coupling efficiency/% 1 0.60 60.0 2 1.42 71.0 3 2.31 77.0 4 3.22 80.5 5 4.17 83.4 6 5.23 87.2 -
[1] 王子薇, 王兆坤, 邹峰, 等.高峰值功率皮秒脉冲棒状光子晶体光纤放大器[J].中国激光, 2016, 43(10):1001001. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201610002.htmWANG Z W, WANG ZH K, ZOU F, et al.. High-peak-power rod-type photonic crystal fiber amplifier for picosecond pulses[J]. Chinese Journal of Lasers, 2016, 43(10):1001001.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201610002.htm [2] 杜木青, 张伶莉, 刘永军.液晶及其不同填充结构对光子晶体光纤传输特性的影响[J].液晶与显示, 2018, 33(2):116-122. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201802003DU M Q, ZHANG L L, LIU Y J. Effect of liquid crystal and its different filling structure on the transmission properties of photonic crystal fiber[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(2):116-122.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201802003 [3] HANS J O, FABIAN S, NORBERT M, et al.. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Optics Letters, 2014, 39(22):6446-6449. doi: 10.1364/OL.39.006446 [4] 白洋, 邹峰, 王子薇, 等.3.4 MW峰值功率皮秒光纤激光系统及其光谱特性研究[J].中国激光, 2017, 44(5):0501004. http://www.cnki.com.cn/Article/CJFDTotal-JJZZ201705004.htmBAI Y, ZOU F, WANG Z W, et al.. Spectral properties of picosecond fiber Laser system with 3.4 MW peak power[J]. Chinese Journal of Lasers, 2017, 44(5):0501004.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JJZZ201705004.htm [5] 冯迪, 赵正琪, 房启蒙, 等.光子晶体光纤端面研磨损伤的分析[J].光学精密工程, 2017, 25(11):2895-2903. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201711016FENG D, ZHAO ZH Q, FANG Q M, et al.. Analysis of end face damage in lapping of photonic crystal fiber[J]. Opt. Precision Eng., 2017, 25(11):2895-2903.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201711016 [6] 高静.可调谐锁模光纤激光器泵浦的超连续谱光源[J].光学精密工程, 2018, 26(1):25-30. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801004GAO J. Tunable mode-locked fiber laser pumped supercontinuum source[J]. Opt. Precision Eng., 2018, 26(1):25-30.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801004 [7] 高静, 于峰, 匡鸿深, 等.纳秒声光调Q光纤激光器产生超连续谱[J].光学精密工程, 2014, 22(5):1139-1142. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201405004GAO J, YU F, KUANG H SH, et al.. Generation of supercontinuum spectra from acousto-optic Q-switched nanosecond fiber laser[J]. Opt. Precision Eng., 2014, 22(5):1139-1142.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201405004 [8] 顾敏.变革型纳米光子学[J].光学与光电技术, 2012, 10(2):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200572665GU M. Transformational nanophotonics[J]. Optics & Optoelectronic Technology, 2012, 10(2):1-8.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200572665 [9] 易昌申, 张培晴, 戴世勋, 等.大模场光子晶体光纤研究进展[J].激光与光电子学进展, 2012, 49(10):100001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204676212YI CH SH, ZHANG P Q, DAI SH X, et al.. Research progress of large-mode area photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2012, 49(10):100001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204676212 [10] 陈瑰, 蒋作文, 彭景刚, 等.空气包层大模场面积掺镱光子晶体光纤研究[J].物理学报, 2012, 61(14):144206. doi: 10.7498/aps.61.144206CHEN G, JIANG Z W, PENG J G, et al.. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber[J]. Acta Physica Sinica, 2012, 61(14):144206.(in Chinese) doi: 10.7498/aps.61.144206 [11] ZHI Z, BRIAN S, MICHIKO M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 2017, 25(7):8138-3143. doi: 10.1364/OE.25.008138 [12] 李卡, 谭中伟.空间散射光到单模光纤的耦合[J].红外与激光工程, 2016, 45(1):0122005. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201601039LI K, TAN ZH W. Coupling of scattering light in space into single mode fiber[J]. Infrared and Laser Engineering, 2016, 45(1):0122005.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201601039 [14] 魏荣, 王育竹.望远镜准直系统应用于激光的单模光纤耦合[J].中国激光, 2003, 30(8):687-690. doi: 10.3321/j.issn:0258-7025.2003.08.005WEI R, WANG Y ZH. Telescope system used to the single mode fiber coupling of the laser[J]. Chinese Journal of Lasers, 2003, 30(8):687-690.(in Chinese) doi: 10.3321/j.issn:0258-7025.2003.08.005 [15] LAZZARONI M, ZOCCHI F E. Optical coupling from plane wave to step-index single-mode fiber[J]. Optics Communications, 2004, 237:37-43. doi: 10.1016/j.optcom.2004.03.092 [16] SAKAI J I, KIMURA T. Design of a miniature lens for semiconducror laser to single-mode fiber coupling[J]. IEEE Journal of Quantum Electronics, 1980, 16(10):1059-1066. doi: 10.1109/JQE.1980.1070359 [17] 卢亚雄, 杨亚培, 陈淑芬.激光束的传输和变换技术[M].成都:电子科技大学出版社, 1999.LU Y X, YANG Y P, CHEN SH F. Laser Transmission and Transform Technology[M]. Chengdu:University of Electronic Science and Technology of China Press, 1999.(in Chinese) [18] 肖志刚, 李斌成.高斯光束到光纤的单透镜耦合[J].光电工程, 2008, 35(8):29-34. doi: 10.3969/j.issn.1003-501X.2008.08.007XIAO ZH G, LI B CH. Single-lens coupling efficiency of a fundamental gaussian beam to an optical fiber[J]. Opto-Electronic Engineering, 2008, 35(8):29-34.(in Chinese) doi: 10.3969/j.issn.1003-501X.2008.08.007 [18] 陈雪坤, 张璐, 吴志勇.空间激光与单模光纤和光子晶体光纤的耦合效率[J].中国光学, 2013, 6(2):208-215. http://www.chineseoptics.net.cn/CN/abstract/abstract8891.shtmlCHEN X K, ZHANG L, WU ZH Y. Coupling efficiency of free-space laser coupling into single mode fiber photonic crystal fiber[J]. Chinese Optics, 2013, 6(2):208-215.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8891.shtml [19] 欧攀.高等光学仿真[M].北京:北京航空航天大学出版社, 2014.OU P. Optical Simulation in MATLAB[M]. Beijing:Beihang University Press, 2014.(in Chinese) [20] 王宇华, 李志华, 段发阶.光纤耦合效率与接收光强计算研究[J].光电工程, 2005, 32(7):42-44. doi: 10.3969/j.issn.1003-501X.2005.07.012WANG Y H, LI ZH H, DUAN F J. Research on coupling factor and receiving power of optical fiber[J]. Opto-Electronic Engineering, 2005, 32(7):42-44.(in Chinese) doi: 10.3969/j.issn.1003-501X.2005.07.012 [21] 李海清, 刘超平, 赵楠, 等.掺镱光纤的吸收系数测试研究[J].光学与光电技术, 2017, 15(1):72-75. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201701015LI H Q, LU CH P, ZHAO N, et al.. Study on the absorption coefficient measurement of Yb-droped fiber[J]. Optics & Optoelectronic Technology, 2017, 15(1):72-75.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201701015