留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波三维成像技术研究进展

王与烨 陈霖宇 徐德刚 石嘉 冯华 姚建铨

王与烨, 陈霖宇, 徐德刚, 石嘉, 冯华, 姚建铨. 太赫兹波三维成像技术研究进展[J]. 中国光学(中英文), 2019, 12(1): 1-18. doi: 10.3788/CO.20191201.0001
引用本文: 王与烨, 陈霖宇, 徐德刚, 石嘉, 冯华, 姚建铨. 太赫兹波三维成像技术研究进展[J]. 中国光学(中英文), 2019, 12(1): 1-18. doi: 10.3788/CO.20191201.0001
WANG Yu-ye, CHEN Lin-yu, XU De-gang, SHI Jia, FENG Hua, YAO Jian-quan. Advances in terahertz three-dimensional imaging techniques[J]. Chinese Optics, 2019, 12(1): 1-18. doi: 10.3788/CO.20191201.0001
Citation: WANG Yu-ye, CHEN Lin-yu, XU De-gang, SHI Jia, FENG Hua, YAO Jian-quan. Advances in terahertz three-dimensional imaging techniques[J]. Chinese Optics, 2019, 12(1): 1-18. doi: 10.3788/CO.20191201.0001

太赫兹波三维成像技术研究进展

doi: 10.3788/CO.20191201.0001
基金项目: 

国家973计划 2015CB755403

国家973计划 2014CB339802

国家重点研发专项 2016YFC0101001

国家自然科学基金 61775160

国家自然科学基金 61771332

国家自然科学基金 61471257

中国博士后科学基金特别资助 2016M602954

重庆市博士后科研项目特别资助 Xm2016021

重庆西南医院生物强院科技创新计划 SWH2016LHJC04

重庆西南医院生物强院科技创新计划 SWH2016LHJC01

详细信息
    作者简介:

    王与烨(1983-), 女, 山西朔州人, 副教授, 博士生导师, 2004年于天津大学获得学士学位, 2009年于天津大学获得博士学位, 主要从事太赫兹光子学技术及太赫兹成像方面的研究。E-mail:yuyewang@tju.edu.cn

    徐德刚(1974—),男,山东青岛人,教授,博士生导师,2005年于天津大学获得博士学位,现为天津大学精密仪器与光电子工程学院教授,主要从事全固态激光技术、太赫兹技术及其应用方面的研究。E-mail:xudegang@tju.edu.cn

  • 中图分类号: TN29

Advances in terahertz three-dimensional imaging techniques

Funds: 

the National Basic Research Program of China(973) 2015CB755403

the National Basic Research Program of China(973) 2014CB339802

National Key Research and Development projects 2016YFC0101001

National Natural Science Foundation of China(NSFC) 61775160

National Natural Science Foundation of China(NSFC) 61771332

National Natural Science Foundation of China(NSFC) 61471257

China Postdoctoral Science Foundation 2016M602954

Postdoctoral Science Foundation of Chongqing Xm2016021

Joint Incubation Project of Southwest Hospital SWH2016LHJC04

Joint Incubation Project of Southwest Hospital SWH2016LHJC01

More Information
  • 摘要: 太赫兹波具有良好的光谱特性、非电离性和对许多非极性材料具有穿透性,在无损探伤、安检、生物医学诊断、艺术品鉴别等领域表现出许多独特的优点。特别是,太赫兹波三维成像技术能够实现样品内部信息探测,逐渐成为当前的研究热点,并展现出广阔的发展前景。本文重点介绍了太赫兹波三维成像的几种常用技术,包括其基本原理和对应的研究进展,并分析了存在的问题和发展趋势。

     

  • 图 1  (a) Shepp-Logan头部模型;(b)模型的投影正弦图

    Figure 1.  (a)Shepp-Logan phantom; (b)Projection sinogram of Shepp-Logan

    图 2  (a) 基于THz-TDS系统的太赫兹CT实验装置图;(b)火鸡骨的实物图与太赫兹三维成像图[22]

    Figure 2.  (a)Experimental setup for THz CT based on THz-TDS; (b)Physical map and 3D image of a turkey bone[22]

    图 3  装有乳糖和酪氨酸的聚苯乙烯层析成像(a)样品示意图和(b)层析成像图[27]

    Figure 3.  (a)Schematic representation and (b)tomographic image of the cylindrical polystyrene with lactose and tyrosine[27]

    图 4  快速三维太赫兹光谱层析实验示意图[31]

    Figure 4.  Schematic of fast three-dimensional terahertz spectral tomography experiment[31]

    图 5  高功率连续波量子级联激光器的太赫兹CT成像结果[33]

    Figure 5.  THz CT imaging results of high-power continuous wave quantum cascade laser[33]

    图 6  太赫兹CT在无损检测方面的应用。(a)NASA隔热保护材料[38];(b)古埃及陶器[39];(c)人类腰椎骨[40]

    Figure 6.  Applications of Terahertz computed tomography in nondestructive testing. (a)NASA thermal insulation system material[38]; (b)ancient Egyptian sealed pottery[39]; (c)human lumbar vertebra bone[40]

    图 7  (a) 干燥鸡腿骨照片(黑线表示断面区域);(b)断面照片;(c)强度断面重建;(d)多峰值平均断面重建[44]

    Figure 7.  (a)Digital photograph of the dried chicken femur (the horizontal black line indicates the region of the cross-section); (b)digital photograph of the sectioned chicken femur; (c)Strength section reconstruction; (d)cross-section reconstruction of multi-peak average[44]

    图 8  (a) 聚合物颅骨模型照片,使用优化的(b)FBP;(c)SART;(d)OSEM算法重建的三维结构[46]

    Figure 8.  (a)Photograph of the polymer skull, 3D visualization of the optimized (a)FBP; (b)SART; (c)OSEM results[46]

    图 9  (a) 喷头照片;(b)FBP三维重建结果;(c)SART三维重建结果;(d)ML-TR三维重建结果[47]

    Figure 9.  (a)Photograph of nozzle; (b)3D visualizations of FBP; (c)SART; (d)ML-TR results[47]

    图 10  (a) 修正带照片;(b)内部机械构造;(c)塑料外表面[48]

    Figure 10.  (a)Photograph of correction tape; (b)Internal mechanical structure(ruban(blue) and head of the roller(green); (c)external surface of plastics[48]

    图 11  使用(a)传统的算法;(b)修正的算法重建的天然软木塞二维断面图像[50]

    Figure 11.  Reconstructed 2D tomographic images of the natural cork stopper (a)without and (b)with correction algorithm applied[50]

    图 12  (a) 基于光纤激光器的高分辨率太赫兹飞行时间层析实验装置;(b)三张纸的三维层析成像结果;(c)半导体样品示意图;(d)GaAs薄层层析成像图[57]

    Figure 12.  (a)Experimental set up for the fiber-laser, high-resolution THz time-of-flight tomography system; (b)3D terahertz-tomography image of three sheets of paper; (c)schematic diagram of the semiconductor sample; (d)GaAs layer tomography[57]

    图 13  (a) 太赫兹时域光学相干层析实验装置;(b)样品空间分布示意图;(c)层析成像结果[66]

    Figure 13.  (a)Experimental set up for THz time-domain optical coherent tomography; (b)schematic of the sample spatial distribution; (c)tomographic images of the objects[66]

    图 14  (a) 藏有手枪的假人;(b)相应的太赫兹图像[72]

    Figure 14.  (a)Dummy with a pistol and its (b)corresponding THz image[72]

    图 15  断层合成层析实验原理[77]

    Figure 15.  Experimental principle of tomosynthesis[77]

    图 16  (a) 太赫兹衍射层析实验装置;(b)样品;(c)样品重建图像[78]

    Figure 16.  (a)Experimental setup of terahertz diffraction tomography; (b)sample; (c)reconstruction of the sample[78]

    图 17  对“T”“H”“Z”字母掩模板的菲涅尔透镜层析成像[78]

    Figure 17.  Fresnel lens tomographic imaging using 'T', 'H' and 'Z' masks[78]

    图 18  太赫兹三维数字全息实验装置[78]

    Figure 18.  Experimental setup for three-dimensional THz digital holography[78]

  • [1] WANG Y Y, MINAMIDE H, TANG M, et al.. Study of water concentration measurement in thin tissues with terahertz-wave parametric source[J]. Optics Express, 2010, 18(15):15504-15512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002222124
    [2] WOODWARD R M, COLE B E, WALLACE V P, et al.. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J]. Physics in Medicine and Biology, 2002, 47(21):3853-3863. doi: 10.1088/0031-9155/47/21/325
    [3] LIU H X, WANG Y Y, XU D G, et al.. High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging[J]. Journal of Physics D:Applied Physics, 2017, 50(37):375103. doi: 10.1088/1361-6463/aa7d9a
    [4] 刘宏翔, 姚建铨, 王与烨, 等.太赫兹波近场成像综述[J].红外与毫米波学报, 2016, 35(3):300-309. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009

    LIU H X, YAO J Q, WANG Y Y, et al.. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3):300-309.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009
    [5] 丁丽, 丁茜, 叶阳阳, 等.室内人体隐匿物被动太赫兹成像研究进展[J].中国光学, 2017, 10(1):114-121. http://www.chineseoptics.net.cn/CN/abstract/abstract9517.shtml

    DING L, DING Q, YE Y Y, et al.. Overview of passive terahertz imaging systems for indoor concealed detection[J]. Chinese Optics, 2017, 10(1):114-121.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9517.shtml
    [6] LUUKANEN A, GRÖNBERG L, GRÖNHOLM M, et al.. Real-time passive terahertz imaging system for standoff concealed weapons imaging[J]. Proceedings of SPIE, 2010, 7670:767004. doi: 10.1117/12.850369
    [7] WIETZKE S, J RDENS C, KRUMBHOLZ N, et al.. Terahertz imaging:a new non-destructive technique for the quality control of plastic weld joints[J]. Journal of the European Optical Society, 2007, 2:07013. doi: 10.2971/jeos.2007.07013
    [8] SHEN Y C, LO T, TADAY P F, et al.. Detection and identification of explosives using terahertz pulsed spectroscopic imaging[J]. Applied Physics Letters, 2005, 86:241116. doi: 10.1063/1.1946192
    [9] JACKSON J B, MOUROU M, WHITAKER J F, et al.. Terahertz imaging for non-destructive evaluation of mural paintings[J]. Optics Communications, 2008, 281(4):527-532. doi: 10.1016/j.optcom.2007.10.049
    [10] ADAM A J L, PLANKEN P C M, MELONI S, et al.. Terahertz imaging of hidden paint layers on canvas[J]. Optics Express, 2009, 17(5):3407-3416. doi: 10.1364/OE.17.003407
    [11] LIU H B, ZHONG H, KARPOWICZ N, et al.. Terahertz spectroscopy and imaging for defense and security applications[J]. Proceedings of the IEEE, 2007, 95(8):1514-1527. doi: 10.1109/JPROC.2007.898903
    [12] SHEN Y C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications:a review[J]. International Journal of Pharmaceutics, 2011, 417(1-2):48-60. doi: 10.1016/j.ijpharm.2011.01.012
    [13] JOSEPH C S, YAROSLAVSKY A N, NEEL V A, et al.. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers[J]. Lasers in Surgery & Medicine, 2011, 43(6):457-462.
    [14] JI Y B, OH S J, KANG S G, et al.. Terahertz reflectometry imaging for low and high grade gliomas[J]. Scientific Reports, 2016, 6:36040. doi: 10.1038/srep36040
    [15] CHEN H, CHEN T H, TSENG T F, et al.. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model[J]. Optics Express, 2011, 19(22):21552-21562. doi: 10.1364/OE.19.021552
    [16] MITTLEMAN D M, HUNSCHE S, BOIVIN L, et al.. T-ray tomography[J]. Optics Letters, 1997, 22(12):904-906. doi: 10.1364/OL.22.000904
    [17] LI Q, LI Y D, DING S H, et al.. Terahertz computed tomography using a continuous-wave gas laser[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(5):548-558. doi: 10.1007/s10762-012-9897-7
    [18] 焦月英.连续太赫兹波成像技术的研究[D].北京: 首都师范大学, 2008.

    JIAO Y Y. Study of the continuous-wave terahertz imaging technique[D]. Beijing: Capital Normal University, 2008.(in Chinese)
    [19] 李斌, 王大勇, 周逊, 等.基于面阵式探测器连续太赫兹波三维层析成像[J].太赫兹科学与电子信息学报, 2017, 15(1):21-25. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201701005

    LI B, LI D Y, ZHOU X, et al.. A continuous-wave terahertz 3-D computed tomography using a pyroelectric array detector[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(1):21-25.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201701005
    [20] 郑德伟.连续太赫兹波层析成像实验研究[D].成都: 电子科技大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10614-1011073380.htm

    ZHENG D W. Experimental study of the continuous-wave terahertz tomography[D]. Chengdu: University of Electronic Science and Technology of China, 2011.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10614-1011073380.htm
    [21] 左志高.太赫兹相干层析成像及相关功能器件研究[D].武汉: 华中科技大学, 2013.

    ZUO ZH G. The study of terahertz coherent tomographe imaging and functional device[D]. Wuhan: Huazhong University of Science & Technology, 2013.(in Chinese)
    [22] FERGUSON B, WANG S, GRAY D, et al.. T-ray computed tomography[J]. Optics Letters, 2002, 27(15):1312-1314. doi: 10.1364/OL.27.001312
    [23] TRIPATHI S R, SUGIYAMA Y, MURATE K, et al.. Terahertz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter and detector[J]. Optics Express, 2016, 24(6):6433-6440. doi: 10.1364/OE.24.006433
    [24] AHARON A(AKRAM), ROZBAN D, KLEIN A, et al.. Detection and upconversion of three-dimensional MMW/THz images to the visible[J]. Photonics Research, 2016, 4(6):306-312. doi: 10.1364/PRJ.4.000306
    [25] 闫镔, 李磊.CT图像重建算法[M].北京:科学出版社, 2014.

    YAN B, LI L. CT Image Reconstruction Algorithm[M]. Beijing:Science Press, 2014.(in Chinese)
    [26] BRAHM A, KUNZ M, RIEHEMANN S, et al.. Volumetric spectral analysis of materials using terahertz-tomography techniques[J]. Applied Physics B, 2010, 100(1):151-158. doi: 10.1007/s00340-010-3945-6
    [27] KATO E, NISHINA S, IRISAWA A, et al.. 3D Spectroscopic computed tomography imaging using terahertz waves[C]. International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, 2010: 1-2.
    [28] IMAMURA M, NISHINA S, IRISAWA A, et al.. 3D Imaging and analysis system using terahertz waves[C]. International Conference on Infrared Millimeter and Terahertz Waves, Rome, Italy: IRMMW-THz, 2010: 1-2.
    [29] YIN X X, NG B W H, FERGUSON B, et al.. Wavelet transform and terahertz local tomography[J]. Proceedings of SPIE, 2007, 6631:1-11. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216594424/
    [30] YIN X X, NG B W H, ABBOTT D, et al.. Local reconstruction for three dimensional terahertz imaging using a CW quantum cascade laser[C]. Proceedings of the 2008 International Conference on Image Processing, Computer Vision & Pattern Recognition, 2008: 252-258.
    [31] ABRAHAM E, OGHI Y, MINAMI M, et al.. Real-time line projection for fast terahertz spectral computed tomography[J]. Optics letters, 2011, 36(11):2119-2121. doi: 10.1364/OL.36.002119
    [32] JEWARIYA M, ABRAHAM E, KITAGUCHI T, et al.. Fast three-dimensional terahertz computed tomography using real-time line projection of intense terahertz pulse[J]. Optics Express, 2013, 21(2):2423-2433. doi: 10.1364/OE.21.002423
    [33] NGUYEN K L, JOHNS M L, GLADDEN L, et al.. Three-dimensional imaging with a terahertz quantum cascade laser[J]. Optics Express, 2006, 14(6):2123-2129. doi: 10.1364/OE.14.002123
    [34] OTANI C, SUGA M, SASAHARA T, et al.. THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source:proof of the concept[J]. Optics Express, 2013, 21(21):25389-25402. doi: 10.1364/OE.21.025389
    [35] KASHIWAGI T, NAKADE K, SAIWAI Y, et al.. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator[J]. Applied Physics Letters, 2014, 104(8):082603. doi: 10.1063/1.4866898
    [36] ZHOU T, ZHANG R, YAO C, et al.. Terahertz three-dimensional imaging based on computed tomography with photonics-based noise source[J]. Chinese Physics Letters, 2017, 34(8):76-78.
    [37] HILLGER P, SCHLUTER A, JAIN R, et al.. Low-Cost 0.5 THz computed tomography based on silicon components[C]. International Conference on Infrared, Millimeter, and Terahertz Waves, Cancun, Mexico: IRMMW-THz, 2017: 1-2.
    [38] ROTH D J, REYES-RODRIGUEZ S, ZIMDARS D A, et al.. Terahertz computed tomography of NASA thermal protection system materials[C]. AIP Conference Proceedings, 2012, 1430: 566-572.
    [39] CAUMES J P, YOUNUS A, SALORT S, et al.. Terahertz tomographic imaging of XVⅢth Dynasty Egyptian sealed pottery[J]. Applied Optics, 2011, 50(20):3604-3608. doi: 10.1364/AO.50.003604
    [40] BESSOU M, CHASSAGNE B, CAUMES J P, et al.. Three-dimensional terahertz computed tomography of human bones[J]. Applied Optics, 2012, 51(28):6738-6744. doi: 10.1364/AO.51.006738
    [41] OZANYAN K B, WRIGHT P, STRINGER M R, et al.. Hard-Field THz Tomography[J]. IEEE Sensors Journal, 2011, 11(10):2507-2513. doi: 10.1109/JSEN.2011.2144967
    [42] BITMAN A, GOLDRING S, MOSHE I, et al.. Computed tomography using broadband Bessel THz beams and phase contrast[J]. Optics Letters, 2014, 39(7):1925-1928. doi: 10.1364/OL.39.001925
    [43] BRAHM A, WILMS A, TYMOSHCHUK M, et al.. Optical effects at projection measurements for terahertz tomography[J]. Optics & Laser Technology, 2014, 62(62):49-57.
    [44] ABRAHAM E, YOUNUS A, AGUERRE C, et al.. Refraction losses in terahertz computed tomography[J]. Optics Communications, 2010, 283(10):2050-2055. doi: 10.1016/j.optcom.2010.01.013
    [45] RECUR B, YOUNUS A, SALORT S, et al.. Investigation on reconstruction methods applied to 3D terahertz computed tomography[J]. Optics Express, 2011, 19(6):5105-5117. doi: 10.1364/OE.19.005105
    [46] RECUR B, GUILLET J P, BASSEL L, et al.. Terahertz radiation for tomographic inspection[J]. Optical Engineering, 2012, 51(9):091609. doi: 10.1117/1.OE.51.9.091609
    [47] RECUR B, BALACEY H, SLEIMAN J B, et al.. Ordered subsets convex algorithm for 3D terahertz transmission tomography[J]. Optics Express, 2014, 22(19):23299-23309. doi: 10.1364/OE.22.023299
    [48] BALACEY H, RECUR B, PERRAUD J B, et al.. Advanced processing sequence for 3-D THz imaging[J]. IEEE Transactions on Terahertz Science & Technology, 2016, 6(2):191-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9df6c6b599e986b66ede8a5198f1f442
    [49] MUKHERJEE S, FEDERICI J. Study of structural defects inside natural cork by pulsed terahertz tomography[C]. International Conference on Infrared, Millimeter and Terahertz Waves, Houston, USA: IRMMW-THz, 2011: 1-2.
    [50] MUKHERJEE S, FEDERICI J, LOPES P, et al.. Elimination of fresnel reflection boundary effects and beam steering in pulsed terahertz computed tomography[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(9):539-555. doi: 10.1007/s10762-013-9985-3
    [51] TEPE J, SCHUSTER T, LITTAU B. A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography[J]. Inverse Problems in Science and Engineering, 2016, 25(10):1448-1478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/17415977.2016.1267168
    [52] SUN W F, WANG X K, ZHANG Y. A method to monitor the oil pollution in water with reflective pulsed terahertz tomography[J]. Optik, 2012, 123(21):1980-1984. doi: 10.1016/j.ijleo.2011.10.002
    [53] SKRYL A S, JACKSON J B, BAKUNOV M I, et al.. Terahertz time-domain imaging of hidden defects in wooden artworks:application to a Russian icon painting[J]. Applied Optics, 2014, 53(6):1033-1038. doi: 10.1364/AO.53.001033
    [54] ZHONG H, XU J Z, XIE X X, et al.. Nondestructive defect identification with terahertz time-of-flight tomography[J]. IEEE Sensors Journal, 2005, 5(2):203-208. doi: 10.1109/JSEN.2004.841341
    [55] ZEITLER J A, SHEN Y, BAKER C, et al.. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging[J]. Journal of Pharmaceutical Sciences, 2007, 96(2):330-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94ea7fc9522ffa5a4d8f06b03fc5f57a
    [56] JOHNSON J L, DORNEY T D, MITTLEMAN D M. Enhanced depth resolution in terahertz imaging using phase-shift interferometry[J]. Applied Physics Letters, 2001, 78(6):835-837. doi: 10.1063/1.1346626
    [57] TAKAYANAGI J, JINNO H, ICHINO S, et al.. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser[J]. Optics Express, 2009, 17(9):7533-7539. doi: 10.1364/OE.17.007533
    [58] PARK H, SON J H, AHN C B. Enhancement of terahertz reflection tomographic imaging by interference cancellation between layers[J]. Optics Express, 2016, 24(7):7028-7036. doi: 10.1364/OE.24.007028
    [59] PEARCE J, CHOI H, MITTLEMAN D M, et al.. T-ray reflection computed tomography[C]. Conference on Lasers and Electro-Optics, 2006, 3: 2120-2122.
    [60] YASUDA T, YASUI T, ARAKI T, et al.. Real-time two-dimensional terahertz tomography of moving objects[J]. Optics Communications, 2006, 267(1):128-136. doi: 10.1016/j.optcom.2006.05.063
    [61] JIN K H, KIM Y G, CHO S H, et al.. High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation[J]. Optics Express, 2012, 20(23):25432-25440. doi: 10.1364/OE.20.025432
    [62] YEE D S, JIN K H, YAHNG J S, et al.. High-speed terahertz reflection three-dimensional imaging using beam steering[J] Optics Express, 2015, 23(4):5027-5034. doi: 10.1364/OE.23.005027
    [63] CHO S H, LEE S H, NAMGUNG C, et al.. Fast terahertz reflection tomography using block-based compressed sensing[J]. Optics Express, 2011, 19(17):16401-16409. doi: 10.1364/OE.19.016401
    [64] HUANG D, SWANSON E A, LIN C P, et al.. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181. doi: 10.1126/science.1957169
    [65] 黄亚雄, 姚建铨, 凌福日, 等.基于相干层析的太赫兹成像技术研究[J].激光与红外, 2015, 45(10):1261-1265. doi: 10.3969/j.issn.1001-5078.2015.10.023

    HUANG Y X, YAO J Q, LING F R, et al.. Terahertz imaging technology based on coherent tomography[J]. Laser and Infrared, 2015, 45(10):1261-1265.(in Chinese) doi: 10.3969/j.issn.1001-5078.2015.10.023
    [66] ISOGAWA T, KUMASHIRO T, SONG H J, et al.. Tomographic imaging using photonically generated low-coherence Terahertz noise sources[J]. IEEE Transactions on Terahertz Science & Technology, 2012, 2(5):485-492. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227194901/
    [67] 吴彤, 丁志华.20 Hz扫频光学相干层析系统[J].中国激光, 2009, 36(2):503-508. http://d.old.wanfangdata.com.cn/Periodical/zgjg200902050

    WU T, DING ZH H. Development of 20 Hz swept source optical coherence tomography system[J]. Chinese Journal of Lasers, 2009, 36(2):503-508.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgjg200902050
    [68] 吴彤.扫频光学相干层析成像方法与系统研究[D].杭州: 浙江大学, 2011.

    WU T. Development of swept source optical coherence tomography[D]. Hangzhou: Zhejiang University, 2011.(in Chinese)
    [69] IKEOU T, ISOGAWA T, AJITO K, et al.. Terahertz imaging using swept source optical-coherence-tomography techniques[C]. International Topical Meeting on Microwave Photonics. IEEE, 2013: 290-293.
    [70] NAGATSUMA T, NISHⅡ H, IKEO T. Terahertz imaging based on optical coherence tomography[Invited] [J]. Photonics Research, 2014, 2(4):B64-B69. doi: 10.1364/PRJ.2.000B64
    [71] YAHNG J S, PARK C S, LEE H D, et al.. High-speed frequency-domain terahertz coherence tomography[J]. Optics Express, 2016, 24(2):1053-1061. doi: 10.1364/OE.24.001053
    [72] QUAST H, LOFFLER T. 3D-terahertz-tomography for material inspection and security[C]. International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Korea: IRMMW-THz, 2009: 1-2.
    [73] WEG C A, SPIEGEL W V, HENNEBERGER R, et al.. Fast active THz cameras with ranging capabilities[J]. Journal of Infrared Millimeter & Terahertz Waves, 2009, 30(12):1281-1296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=974d82c23be47d19b2cf31ec3c308436
    [74] KAPILEVICH B, PINHASI Y, ARUSI R, et al. 330 GHz FMCW image sensor for homeland security applications[J]. Journal of Infrared Millimeter & Terahertz Waves, 2010, 31(11):1370-1381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc5b22700225ea43c85c5a370b9fcd21
    [75] KAK A C, SLANEY M WANG G. Principles of computerized tomographic imaging[J]. Medical Physics, 2002, 29(1):106-108.
    [76] GUILLET J P, RECUR B, FREDERIQUE L, et al. Review of terahertz tomography techniques[J]. Journal of Infrared, Millimeter & Terahertz Waves, 2014, 35(4):382-411.
    [77] SUNAGUCHI N, SASAKI Y, MAIKUSA N, et al. Depth-resolving THz imaging with tomosynthesis[J]. Optics Express, 2009, 17(12):9558-9570. doi: 10.1364/OE.17.009558
    [78] WANG S, ZHANG X C. Pulsed terahertz tomography[J]. Journal of Physics D:Applied Physics, 2004, 37(4):R1-R36. doi: 10.1088/0022-3727/37/4/R01
    [79] WANG S, ZHANG X C. Tomographic imaging with a terahertz binary lens[J]. Applied Physics Letters, 2003, 82(12):1821-1823. doi: 10.1063/1.1563043
    [80] 石敬, 王新柯, 郑显华, 等.太赫兹数字全息术的研究进展[J].中国光学, 2017, 10(1):131-147. http://www.chineseoptics.net.cn/CN/abstract/abstract9504.shtml

    SHI J, WANG X K, ZHENG X H, et al.. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1):131-147.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9504.shtml
    [81] HEREMANS R, VANDEWAL M, ACHEROY M. Space-time versus frequency domain signal processing for 3D THz imaging[J]. Sensors IEEE, 2010:739-744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210326202
    [82] 张振宇.合成孔径雷达三维成像技术研究[D].南京: 南京理工大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10284-1015315608.htm

    ZHANG ZH Y. Study the synthetic aperture radar 3D imaging technique[D]. Nanjing: Nanjing University of Science and Technology, 2009.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10284-1015315608.htm
  • 加载中
图(18)
计量
  • 文章访问数:  5951
  • HTML全文浏览量:  2472
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 修回日期:  2018-04-04
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!