留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双光子吸收碱金属蒸气激光器研究进展

俞航航 陈飞 李耀彪 何洋 潘其坤 谢冀江 于德洋 卢启鹏

俞航航, 陈飞, 李耀彪, 何洋, 潘其坤, 谢冀江, 于德洋, 卢启鹏. 双光子吸收碱金属蒸气激光器研究进展[J]. 中国光学, 2019, 12(1): 38-47. doi: 10.3788/CO.20191201.0038
引用本文: 俞航航, 陈飞, 李耀彪, 何洋, 潘其坤, 谢冀江, 于德洋, 卢启鹏. 双光子吸收碱金属蒸气激光器研究进展[J]. 中国光学, 2019, 12(1): 38-47. doi: 10.3788/CO.20191201.0038
YU Hang-hang, CHEN Fei, LI Yao-biao, HE Yang, PAN Qi-kun, XIE Ji-jiang, YU De-yang, LU Qi-peng. Research progress on the two-photon absorption alkali vapor laser[J]. Chinese Optics, 2019, 12(1): 38-47. doi: 10.3788/CO.20191201.0038
Citation: YU Hang-hang, CHEN Fei, LI Yao-biao, HE Yang, PAN Qi-kun, XIE Ji-jiang, YU De-yang, LU Qi-peng. Research progress on the two-photon absorption alkali vapor laser[J]. Chinese Optics, 2019, 12(1): 38-47. doi: 10.3788/CO.20191201.0038

双光子吸收碱金属蒸气激光器研究进展

doi: 10.3788/CO.20191201.0038
基金项目: 

中科院国防创新基金项目 CXJJ-16M228

吉林省中青年科技创新领军人才及团队项目 20170519012JH

吉林省重大科技招标专项 20160203016GX

详细信息
    作者简介:

    俞航航(1992-), 男, 山东枣庄人, 博士研究生, 2015年于山东师范大学获得学士学位, 现为中国科学院长春光学精密机械与物理研究所光学工程硕博连读研究生, 主要从事碱金属激光器方面的研究。E-mail:13021908922@163.com

    陈飞(1982—),男,河南南阳人,副研究员,博士生导师,2011年于哈尔滨工业大学获得硕博士学位,现工作于中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室,主要从事高功率气体激光器及其应用方面的研究。E-mail:feichenny@126.com

  • 中图分类号: TN248.2

Research progress on the two-photon absorption alkali vapor laser

Funds: 

Defense Innovation Fund of Chinese Academy of Sciences CXJJ-16M228

Young and Middle-Aged Science and Technology Innovation Leader and Team Project in Jilin Province 20170519012JH

Major Scientific and Technological Bidding in Jilin Province 20160203016GX

More Information
  • 摘要: 蓝紫激光和中红外激光在基础研究和国防工程中有重要的应用前景。单光子吸收的碱金属蒸气激光器具有量子效率高、受激发射截面大和热管理性能好等优点,近些年来已成为激光领域中研究热点之一,目前已实现kW量级的输出。双光子吸收的碱金属蒸气激光器可实现蓝紫激光和中红外激光级联输出的特性,也引起越来越多的关注。本文从碱金属原子密度、泵浦光功率、偏振和频率失调量以及调控激光等几种影响因素出发,综述了双光子吸收碱金属蒸气激光的研究进展,在此基础上分析了影响激光输出特性的原因,最后对双光子吸收碱金属蒸气激光器的发展趋势进行了展望。
  • 图  1  铷原子单波长泵浦能级跃迁图

    Figure  1.  Energy level structure of single-wavelength pumped rubidium atom

    图  2  铷原子双波长泵浦能级跃迁图

    Figure  2.  Energy level structure of double-wavelength pumped rubidium atom

    图  3  频率失调量对蓝光特性影响实验装置示意图

    Figure  3.  Schematic diagram of the experimental device of frequency offset effect on the characteristics of blue light

    图  4  双波长激光泵浦铷蒸气实验装置图

    Figure  4.  Schematic diagram of experimental device of double-wavelength pumped rubidium vapor

    图  5  泵浦光偏振与蓝光功率关系图

    Figure  5.  Relationship betweeen pump light polarization and blue laser power

    图  6  在铷原子中引入795 nm激光能级跃迁及部分实验装置示意图

    Figure  6.  Energy level structure of the rubidium atom and part of the experimental device when the 795 nm laser is introduced

    图  7  涡旋光束在碱金属蒸气传递示意图

    Figure  7.  Transmission of the vortex beam in alkali vapor

    图  8  国内首次实现双光子吸收碱金属蒸气激光输出的实验装置示意图

    Figure  8.  Schematic diagram of experimental device of two-photon absorption alkali vapor laser output realized in the domestic for the first time

    图  9  铯原子能级跃迁及2.42 μm激光对非线性过程调控示意图

    Figure  9.  Transition of cesium atom energy level and the control for nonlinear process by 2.42 μm laser

    表  1  双光子吸收碱金属蒸气激光研究成果

    Table  1.   Experimental results of alkali metal vapor laser absorpted by two-photon

    增益介质 泵浦光功率Pp/mW 蒸气池长度/cm 蒸气池温度/℃ 蓝光功率Pblue
    Cs[33] 30(917 nm) 7 110 4 μW (455 nm)
    30(852 nm)
    Rb[27] 7(776 nm) 5 87 15 μW (420 nm)
    7(780 nm)
    Rb[34] 205(776 nm) 5 135 9.1 mW
    390(780 nm)
    Rb[28] 20(776 nm) 5 200 40 μW
    20(780 nm)
    Rb[35] 17(776 nm) 7.5 122 1.1 mW
    25(780 nm)
    Cs[36] 3.6(852 nm) 5 200 0.1 mW
    下载: 导出CSV
  • [1] XU D, CHEN F, GUO J, et al.. Investigation on 447.3 nm blue-violet laser by extra-cavity frequency doubling of a diode-pumped cesium vapor laser[J]. Optics & Laser Technology, 2016, 83(83):119-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26544a72068ae357052027554a9fb070
    [2] PAYNE S A, BEACH R J, DAWSON J W, et al Diode pumped alkali vapor fiber laser: US, US7082148[P]. 2006.
    [3] WANG Y, AN G. Reviews of a Diode-Pumped Alkali Laser(DPAL):a potential high powered light source[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2015, 9521:95211U-95211U-13.
    [4] ZWEIBACK J, KOMASHKO A, KRUPKE W F. Alkali-vapor lasers[C]. SPIE LASE, International Society for Optics and Photonics, 2010: 75810G-75810G-5.
    [5] ZHDANOV B V, VENUS G, SMIRNOV V, et al.. Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode[J]. Review of Scientific Instruments, 2015, 86(8):021010-1126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=abcc5f40cc272279115176d110f76ec7
    [6] ZHDANOV B, EHRENREICH T, KNIZE R J. Efficient Optically Pumped Cesium Vapor Laser[J]. Optics Communications, 2006, 260(2):696-698. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027187384/
    [7] KRUPKE W F, BEACH R J, KANZ V K, et al.. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23):2336-2338. doi: 10.1364/OL.28.002336
    [8] WANG R, YANG Z, WANG H, et al.. Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser[J]. Optics Letters, 2017, 42(4):667-670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3510a80044f92bb8618a7d665e74d092
    [9] KRUPKE W F. Diode pumped alkali laser: US, 6643311[P]. 2003.
    [10] EHRENREICH T, ZHDANOV B, TAKEKOSHI T, et al.. Diode pumped caesium laser[J]. Electronics Letters, 2005, 41(7):415-416. doi: 10.1049/el:20058388
    [11] BOGACHEV A V. Diode-pumped caesiumvapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2):95-98. doi: 10.1070/QE2012v042n02ABEH014734
    [12] HURD E J, HOLTGRAVE J C, PERRAM G P. Intensity scaling of an optically pumped potassium laser[J]. Optics Communications, 2015, 357:63-66. doi: 10.1016/j.optcom.2015.08.087
    [13] 张元生, 徐亮, 陈方, 等.机载定向红外对抗系统的中波红外激光器及关键技术[J].电光与控制, 2017, 24(5):56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017060700001121

    ZHANG Y SH, XU L, CHEN F, et al.. Mid-Infrared lasers used in airborne directed infrared countermeasures systems and its key technologies[J]. Electronics Optics & Control, 2017, 24(5):56-59.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017060700001121
    [14] WELLS J, KAO C, JANSEN E D, et al.. Application of infrared light for in vivo neural stimulation[J]. Journal of Biomedical Optics, 2005, 10(6):064003. doi: 10.1117/1.2121772
    [15] KASPARIAN J M, WOLF J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics Express, 2008, 16(1):466-493.
    [16] 李充, 谢冀江, 潘其坤, 等.中红外光学参量振荡器技术进展[J].中国光学, 2016, 9(06):615-624. http://html.rhhz.net/ZGGX/html/gx20160601.htm

    LI C, XIE J J, PAN Q K, et al.. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(06):615-624.(in Chinese) http://html.rhhz.net/ZGGX/html/gx20160601.htm
    [17] 李会梅, 刘刚, 马殿旭, 等.红外光谱结合统计分析研究鉴别不同品种菜豆[J].光学与光电技术, 2015, 13(5):58-63. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201505013

    LI H M, LIU G, MA D X, et al.. Differentiation of six species of phaseolus vulgaris by infrared spectroscopy combined with statistical analysis[J]. Optics & Optoelectronic Technology, 2015, 13(5):58-63.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201505013
    [18] 袁林光, 薛战理, 李宏光, 等.低温状态下的材料法向发射率测量[J].光学 精密工程, 2016, 24(1):59-64. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601009

    YUAN L G, XUE Z L, LI H G, et al.. Measurement of normal emissivity of materials at low temperature[J]. Opt. Precision Eng., 2016, 24(1):59-64.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601009
    [19] 朱祥, 张志伟, 张文静, 等.基于激光外差干涉的金属微振动检测[J].光学与光电技术, 2016, 14(6):22-25. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201606006

    ZHU X, ZHANG ZH W, ZHANG W J, et al.. Micro-Vibration metal detection based on laser heterodyne interferometer[J]. Optics & Optoelectronic Technology, 2016, 14(6):22-25.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201606006
    [20] 汪鑫, 杜辉, 王兆港, 等.基于激光光源的4K超高清DLP投影光学引擎的设计[J].光学与光电技术, 2017, 15(2):14-19. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201702004

    WANG X, DU H, WANG Z G, et al.. Design of 4K UHD DLP optical engine based on laser light source[J]. Optics & Optoelectronic Technology, 2017, 15(2):14-19.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201702004
    [21] 崔建丰, 高涛, 张亚男, 等.全固态210 nm准连续深紫外激光器[J].光学 精密工程, 2016, 24(10s):212-215.

    CUI J F, GAO T, ZHANG Y N, et al.. All-solid-state 210 nm quasi-continuous deep ultraviolet laser[J]. Opt. Precision Eng., 2016, 24(10s):212-215.(in Chinese)
    [22] SHIMODA R, SAKATA Y, FUJISE T, et al.. The adenoma miss rate of blue-laser imaging vs. white-light imaging during colonoscopy:a randomized tandem trial[J]. Endoscopy, 2017, 49(2):186-190.
    [23] CHEN M F, HO Y S, CHUNG C K, et al.. Examination of the developed scanning system for red-green-blue laser projector with a feedback control[J]. Optical Review, 2011, 18(1):128-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5bec7576d04d50ab82bcf1b280c8ad9e
    [24] TOGASHI K, NEMOTO D, UTANO K, et al.. Blue laser imaging endoscopy system for the early detection and characterization of colorectal lesions:a guide for the endoscopist[J]. Therapeutic Advances in Gastroenterology, 2016, 9(1):50-56. doi: 10.1177/1756283X15603614
    [25] ZIBROV A S, LUKIN M D, HOLLBERG L, et al.. Efficient frequency up-conversion in resonant coherent media[J]. Phys. Rev. A, 2002, 65(5):882-886.
    [26] MEIJER T, WHITE J D, SMEETS B, et al.. Blue five-level frequency-upconversion system in rubidium[J]. Optics Letters, 2006, 31(7):1002-1004. doi: 10.1364/OL.31.001002
    [27] AKULSHIN A M, MCLEAN R J, SIDOROV A I, et al.. Coherent and collimated blue light generated by four-wave mixing in Rbvapour[J]. Optics Express, 2009, 17(25):22861-22870. doi: 10.1364/OE.17.022861
    [28] AKULSHIN A M, OREL A A, MCLEAN R J. Collimated blue light enhancement in velocity-selective pumped Rbvapour[J]. Journal of Physics B Atomic Molecular & Optical Physics, 2012, 45(1):015401.
    [29] AKULSHIN A, PERRELLA C, TRUONG G W, et al.. Frequency evaluation of collimated blue light generated by wave mixing in Rbvapour[J]. Journal of Physics B Atomic Molecular & Optical Physics, 2012, 45(24):245503-245509.
    [30] WALKER G, ARNOLD A S, FRANKEARNOLD S. Frequency translation of orbital angular momentum in four-wave mixing[R]. 2012(No.arXiv: 1203.1520).
    [31] AKULSHIN A M, NOVIKOVA I, MIKHAILOV E E, et al.. Arithmetic with optical topological charges in stepwise-excited Rb vapor[J]. Optics Letters, 2016, 41(6):1146-1149. doi: 10.1364/OL.41.001146
    [32] YONG SUP IHN, KWANG-KYOON PARK, YOSEP KIM, et al.. Intensity correlation in frequency upconversion via four-wave mixing in rubidium vapor[J]. Journal of the Optical Society of America B, 2017, 34(11):2352-2357. doi: 10.1364/JOSAB.34.002352
    [33] SCHULTZ J T, ABEND S, D RING D, et al.. Coherent 455 nm beam production in a cesium vapor[J]. Optics Letters, 2009, 34(15):2321-2323. doi: 10.1364/OL.34.002321
    [34] DEPAOLA B D, SELL J F, GEARBA M A, et al.. Collimated blue and infrared beams generated by two-photon excitation in Rb vapor[J]. Optics Letters, 2013, 39(3):528-531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89eb1f7ebc36bd547b5fff3c2217304a
    [35] VERNIER A, FRANKEARNOLD S, RⅡS E, et al.. Enhanced frequency up-conversion in Rb vapor[J]. Optics Express, 2009, 18(16):17020. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0911.0812
    [36] SULHAM C V, PITZ G A, PERRAM G P. Blue and infrared stimulated emission from alkali vapors pumped through two-photon absorption[J]. Applied Physics B:Lasers and Optics, 2010, 101(1-2):57-63. doi: 10.1007/s00340-010-4015-9
    [37] AKULSHIN A, BUDKER D, MCLEAN R. Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapor[J]. Optics Letters, 2014, 39(4):845-848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=098f12c4e0dba5d3dcbf7e788203d2bf
    [38] AKULSHIN A, BUDKER D, MCLEAN R J. Amplified spontaneous emission in two-photon excited Rb vapour[C]. Icono/lat, 2016.
    [39] AKULSHIN A M, BUDKER D, MCLEAN R J. Parametric wave mixing enhanced by velocity insensitive two-photon excitation in Rbvapour[J]. Journal of the Optical Society of America B, 2017, 34(5):1016-1022. doi: 10.1364/JOSAB.34.001016
    [40] AKULSHIN A M, NAFIA R, SUSLOV S A, et al.. Amplified spontaneous emission at 5.23μm in two-photon excited rubidium vapor[J]. Journal of the Optical Society of America B, 2017, 34(12):2478-2484. doi: 10.1364/JOSAB.34.002478
    [41] 谭彦楠, 李义民, 公发全, 等.双光子吸收420 nm碱金属蒸气蓝光激光器[J].中国激光, 2013, 40(10):54-57.

    TAN Y N, LI Y M, GONG F Q, et al.. 420 nm Alkali blue laser based on two-photon absorption[J]. Chinese Journal of Lasers, 2013, 40(10):54-57.(in Chinese)
    [42] GAI B, CAI H, YANG J, et al.. Efficient generation of collimated frequency upconversion blue light in rubidium vapor[J]. Chinese Optics Letters, 2015, 13(12):67-70.
    [43] GAI B, CAO R, XIA X, et al.. Modulation of a double-line frequency up-conversion process in cesium vapor[J]. Applied Physics B, 2016, 122(6):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9aa7f3b6964042e631b4ed6b85cc2df2
    [44] BREKKE E, ALDERSON L. Parametric four-wave mixing using a single cw laser[J]. Optics Letters, 2013, 38(12):2147-2149. doi: 10.1364/OL.38.002147
    [45] KARGAPOL'TSEV, SERGEI V, VELICHANSKY, et al.. Optical cascade pumping of the 7P3/2 level in cesium atoms[J]. Quantum Electronics, 2005, 35(7):591-597. doi: 10.1070/QE2005v035n07ABEH003570
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1135
  • HTML全文浏览量:  236
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-26
  • 修回日期:  2017-12-02
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回