留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SERS characteristics analysis of composite Ag/SiO2 sinusoidal grating

XIAO Cheng CHEN Zhi-bin QIN Meng-ze ZHANG Dong-xiao

肖程, 陈志斌, 秦梦泽, 张冬晓. 复合Ag/SiO2正弦光栅基底SERS特性分析[J]. 中国光学(中英文), 2019, 12(1): 59-74. doi: 10.3788/CO.20191201.0059
引用本文: 肖程, 陈志斌, 秦梦泽, 张冬晓. 复合Ag/SiO2正弦光栅基底SERS特性分析[J]. 中国光学(中英文), 2019, 12(1): 59-74. doi: 10.3788/CO.20191201.0059
XIAO Cheng, CHEN Zhi-bin, QIN Meng-ze, ZHANG Dong-xiao. SERS characteristics analysis of composite Ag/SiO2 sinusoidal grating[J]. Chinese Optics, 2019, 12(1): 59-74. doi: 10.3788/CO.20191201.0059
Citation: XIAO Cheng, CHEN Zhi-bin, QIN Meng-ze, ZHANG Dong-xiao. SERS characteristics analysis of composite Ag/SiO2 sinusoidal grating[J]. Chinese Optics, 2019, 12(1): 59-74. doi: 10.3788/CO.20191201.0059

复合Ag/SiO2正弦光栅基底SERS特性分析

基金项目: 

国防科技项目基金 2004053

详细信息
    作者简介:

    肖程(1989—),男,江苏张家港人,博士在读,2012年于南京邮电大学获得学士学位,现为陆军工程大学在读博士,主要从事微纳光学领域SERS(表面增强拉曼散射)应用方面的研究,特别是SERS用于痕量爆炸物检测方面的应用研究。E-mail:xc_nanking@163.com

    陈志斌(1965—),男,湖南益阳人,博士,研究员,博士生导师,主要从事光电信息探测与加密传输方面的研究。E-mail:shangxingboy@163.com

  • 中图分类号: TN305.7

SERS characteristics analysis of composite Ag/SiO2 sinusoidal grating

doi: 10.3788/CO.20191201.0059
Funds: 

National Defense Science Technology Project Fund 2004053

More Information
    Author Bio:

    XIAO Cheng(1989—), male, from Zhangjiagang, Jiangsu, is a current Ph.D. student who received a bachelor′s degree from Nanjing University of Posts and Telecommunications in 2012. He is currently studying at Army Engineering University and is mainly engaged in SERS(Surface Enhanced Raman Scattering) applications research with particular attention to SERS′s applications in explosives detection.E-mail:xc_nanking@163.com

    CHEN Zhibin(1965—), male, from Yiyang, Hunan, has a Ph.D. and is a researcher and doctoral tutor who is mainly engaged in research on photoelectric information detection and transmission encryption. E-mail:shangxingboy@163.com

    Corresponding author: XIAO Cheng.E-mail:shangxingboy@163.com
  • 摘要: 当前微流控表面增强拉曼散射(SERS)检测领域常用的贵金属纳米颗粒溶胶单位体积内热点区域数量有限且热点区域范围较小,而贵金属纳米三维阵列结构加工时间长,成本高昂并存在"记忆效应"。本文提出了集成到微流道的复合Ag/SiO2正弦光栅SERS基底结构,可以利用激光干涉光刻技术进行制备,无需预制掩膜版,可实现大面积、低成本SERS基底简易快速制备。利用严格耦合波分析方法(RCWA)建立了复合正弦光栅表面电场增强数学评估模型,推导了表面等离子体共振(SPP)耦合吸收率数学模型,分析了入射光、复合正弦光栅结构与外界环境介电常数的优化匹配关系,得到了入射光785 nm条件下的最佳复合正弦光栅结构。通过制备加工并实验验证了复合正弦光栅的SERS性能,SERS增强因子(EF)能够达到104

     

  • 图 1  (a)激光干涉图样光强度分布;(b)复合正弦光栅截面示意图

    Figure 1.  (a) Light intensity distribution of laser interference; (b)Section diagram of the composite sinusoidal grating

    图 2  (a)吸收率随衍射级次变化曲线;(b)吸收率随入射光波长变化曲线;(c)吸收率随入射角变化曲线

    Figure 2.  (a) Absorbance as a function of diffraction grades; (b)Absorbance as a function of incident light wavelength; (c)Absorbance as a function of incident angle

    图 3  (a)吸收率随光栅周期变化曲线;(b)吸收率随光栅振幅变化曲线;(c)吸收率随光栅银层厚度变化曲线

    Figure 3.  (a) Absorbance as a function of the grating period; (b)Absorbance as a function of grating amplitude; (c)Absorbance as a function of grating silver layer thickness

    图 4  吸收率随光栅表面环境介电常数变化曲线

    Figure 4.  Absorbance as a function of the dielectric constant above the grating surface

    图 5  (a)复合正弦银光栅表面增强电场分布;(b)复合正弦金光栅表面增强电场分布;(c)复合矩形银光栅表面增强电场分布

    Figure 5.  (a) Electric field distribution of composite sinusoidal silver grating; (b)Electric field distribution of composite sinusoidal gold grating; (c)Electric field distribution of composite rectangular silver grating

    图 6  (a)复合正弦光栅结构示意图;(b)干涉光刻系统

    Figure 6.  (a) Structural diagram of the composite sinusoidal grating; (b)Interference photolithography system

    图 7  (a)复合正弦光栅SEM表征图;(b)R6G溶液的SERS光谱图;(c)R6G拉曼特征峰处信号强度的均值误差棒

    Figure 7.  (a) SEM image of the composite sinusoidal grating; (b)SERS spectrum of R6G solutions; (c)Error bars of the mean intensity of R6G Raman peaks from five average spectra

    表  1  Theoretical EF values of the three gratings

    Table  1.   Theoretical EF values of the three gratings

     Grating category EF
    Sine Water/Ag/SiO2 grating 7.4×104
    Sine Water/Au/SiO2 grating 2.0×104
    Rectangular Water/Ag/SiO2 grating 4.4×104
    下载: 导出CSV
  • [1] LI M, CUSHING S K, LIANG H, et al.. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scatteri detection of hepatitis B virus DNA[J]. Anal. Chem., 2013, 85:2072-2078. doi: 10.1021/ac303387a
    [2] ARON H, PER O A, MICHAEL S S, et al.. Explosive and chemical threat detection by surface-enhanced Raman scattering:a review[J]. Anal. Chim. Acta., 2015, 893(233853):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcf75f3477374bdd6fd0ac08ea682e18
    [3] LI D W, ZHAI W L, LI Y T, et al.. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants[J]. Microchim Acta, 2014, 181:23-43. doi: 10.1007/s00604-013-1115-3
    [4] 史云胜, 刘秉琦, 杨兴.超润滑石墨表面的光谱表征研究[J].光学 精密工程, 2017, 25(6):1513-1518. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706015

    SHI Y SH, LIU B Q, YANG X. Research on spectral characterization of superlubricity graphite surface[J]. Opt. Precision Eng., 2017, 25(6):1513-1518.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706015
    [5] 刘燕德, 靳昙昙, 王海阳.基于拉曼光谱的三组分食用调和油快速定量检测[J].光学 精密工程, 2015, 23(9):2490-2496. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509009

    LIU Y D, JIN T T, WANG H Y. Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy[J]. Opt. Precision Eng., 2015, 23(9):2490-2496.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509009
    [6] BRIAN D P, SEUNG J L, MARTIN M, et al.. Free-surface microfluidics/surface enhanced Raman spectroscopy for real-time trace vapor detection of explosives[J]. Anal. Chem., 2012, 84:9700-9705. doi: 10.1021/ac302497y
    [7] YUAN J, AKRAM H, GEORGE C, et al.. Ordered gold nanoparticle arrays on glass and their characterization[J]. J. Colloid Interface Sci, 2013, 410:1-10. doi: 10.1016/j.jcis.2013.07.070
    [8] ZHAO Y Q, ZHANG Y L, HUANG J A, et al.. Plasmonic nanopillar array embedded microfluidic chips:an in situ SERS monitoring platform[J]. J. Mater. Chem. A, 2015, 3:6408-6413. doi: 10.1039/C4TA07076C
    [9] XU T T, HUANG J A, HE L F, et al.. Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface enhanced Raman spectroscopy[J]. Appl. Phys. Lett., 2011, 99(153116):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c38934fefd4d1ca96ab74609f836bbe
    [10] PAUL R M, LAURA F. Understanding nanoparticle assembly:a simulation approach to SERS-active dimers[J]. J. Colloid Interface Sci., 2012, 369:134-143. doi: 10.1016/j.jcis.2011.11.052
    [11] LEEM J, KANG H W, KO H S, et al.. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems[J]. Nanoscale, 2014, 6:2895-2901. doi: 10.1039/c3nr04829b
    [12] TONG L M, XU H X, MIKAEL K. Nanogaps for SERS applications[J]. Mrs Bulletin, 2014, 39:163-168. doi: 10.1557/mrs.2014.2
    [13] BHAVYA S, CARDINAL M F, SAMUEL L K, et al.. High-performance SERS substrates:advances and challenges[J]. MRS Bull., 2013, 38:615-624. doi: 10.1557/mrs.2013.161
    [14] LIN X M, CUI Y, XU Y H, et al.. Surface-enhanced Raman spectroscopy:substrate related issues[J]. Anal Bioanal Chem., 2009, 394:1729-1745. doi: 10.1007/s00216-009-2761-5
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1974
  • HTML全文浏览量:  723
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-14
  • 修回日期:  2018-04-09
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回