留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Femtosecond pulse compression using negative-curvature hollow-core fibers

YU Tao-ying LIU Xue-song ANDREY D. Pryamikov ALEXEY F. Kosolapov ZHANG Hong-bo FAN Zhong-wei

庾韬颖, 刘学松, ANDREYD. Pryamikov, ALEXEYF. Kosolapov, 张鸿博, 樊仲维. 负曲率空芯光纤对飞秒超短脉冲光的压缩研究[J]. 中国光学(中英文), 2019, 12(1): 75-87. doi: 10.3788/CO.20191201.0075
引用本文: 庾韬颖, 刘学松, ANDREYD. Pryamikov, ALEXEYF. Kosolapov, 张鸿博, 樊仲维. 负曲率空芯光纤对飞秒超短脉冲光的压缩研究[J]. 中国光学(中英文), 2019, 12(1): 75-87. doi: 10.3788/CO.20191201.0075
YU Tao-ying, LIU Xue-song, ANDREY D. Pryamikov, ALEXEY F. Kosolapov, ZHANG Hong-bo, FAN Zhong-wei. Femtosecond pulse compression using negative-curvature hollow-core fibers[J]. Chinese Optics, 2019, 12(1): 75-87. doi: 10.3788/CO.20191201.0075
Citation: YU Tao-ying, LIU Xue-song, ANDREY D. Pryamikov, ALEXEY F. Kosolapov, ZHANG Hong-bo, FAN Zhong-wei. Femtosecond pulse compression using negative-curvature hollow-core fibers[J]. Chinese Optics, 2019, 12(1): 75-87. doi: 10.3788/CO.20191201.0075

负曲率空芯光纤对飞秒超短脉冲光的压缩研究

基金项目: 

国家自然科学基金 61605215

详细信息
    作者简介:

    庾韬颖(1989-), 男, 山西吕梁人, 博士研究生, 主要从事空芯光纤特性、超短脉冲技术和非线性光学方面的研究。E-mail:yutaoying@aoe.ac.cn

    樊仲维(1965—),男,吉林桦甸人,研究员,博士生导师,主要从事固体激光技术与短脉冲激光技术方面的研究。E-mail:fanzhongwei@aoe.ac.cn

  • 中图分类号: TP394.1;TH691.9

Femtosecond pulse compression using negative-curvature hollow-core fibers

doi: 10.3788/CO.20191201.0075
Funds: 

National Natural Science Foundation of China 61605215

More Information
    Author Bio:

    YU Tao-ying(1989—), male, from Luliang, Shanxi, has a Ph.D. and is mainly engaged in researching the characteristics of hollow-core fibers, ultrashort pulse technology and non-linear optics.E-mail:yutaoying@aoe.ac.cn

    FAN Zhong-wei(1965—), male, from Huadian, Jilin, is a researcher and doctoral tutor who mainly engages in researching solid-state laser technology and short-pulse laser technology. E-mail:fanzhongwei@aoe.ac.cn

    Corresponding author: FAN Zhong-wei.E-mail:fanzhongwei@aoe.ac.cn
  • 摘要: 为了实现对飞秒激光器产生的超短脉冲的进一步压缩,对近年来出现的一种新型负曲率空芯光纤展开了研究,并基于该光纤对800 nm飞秒激光进行了压缩实验。首先介绍了一种圆形玻璃管包层结构的负曲率空芯光纤,通过有限元方法对光纤的损耗特性进行计算,并与实验测试结果进行对比。然后利用广义非线性薛定谔方程对脉冲在光纤中的传输进行了模拟仿真。最后利用该光纤进行了超短脉冲压缩实验,将脉冲宽度为160 fs的钛宝石飞秒激光耦合进一段充高压氩气的圆形玻璃管包层结构的负曲率空芯光纤,通过光纤内反常色散和自相位调制的共同作用,得到84 fs的输出,实现脉冲的压缩,实验结果与仿真计算一致。这种新型的负曲率空芯光纤损伤阈值高、色散、非线性系数小且灵活可调,非常适用于超快领域研究。

     

  • 图 1  圆形玻璃管空心光纤端面

    Figure 1.  End face of the circular tube hollow-core fiber

    图 2  光纤损耗计算结果

    Figure 2.  Fiber loss calculation results

    图 3  空芯光纤传输损耗测试结果

    Figure 3.  Experimental results of transmittance of the NC-HCF

    图 4  空芯光纤在不同气压下的二阶色散

    Figure 4.  Second-order dispersion of the hollow fiber at different pressures of argon

    图 5  广义非线性薛定谔方程对脉冲在光纤中演变的计算结果. (a)为z=0.5 m时脉冲的频谱分布; (b)为z=0.5 m时脉冲的时域分布; (c)为脉冲在0.5 m长的负曲率空芯光纤中传输时的频域分布; (d)为脉冲在0.5 m长的负曲率空芯光纤中传输时的时域分布

    Figure 5.  The calculated evolution of the ultrafast pulse in the NC-HCF with GNLSE. (a)The spectrum output of 0.5 m NC-HCF; (b)The temporary output of the 0.5 m NC-HCF; (c)The spectrum evolution of the 160 fs pulse propagating along the 0.5 m NC-HCF; (d)The temporary evolution of the 160 fs pulse propagating along the 0.5 m NC-HCF

    图 6  输出脉冲宽度随光纤长度变化

    Figure 6.  Pulse duration evolution varies with fiber length

    图 7  实验光路图

    Figure 7.  Schematic diagram of light path

    图 8  实验与计算的自相关曲线对比

    Figure 8.  Comparison of experimentally measured autocorrelation curves and calculated results

    Figure 9.  Comparison of spectral output obtained from experimental and calculated results

  • [1] PRYAMIKOV A D, BIRIUKOV A S, KOSOLAPOY A F, et al..Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5μm[J].Opt.Express, 2011, 19(2):1441-1448. doi: 10.1364/OE.19.001441
    [2] WANG Y Y, COUNY F, ROBOERS P J, et al..Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF[C].2010 Laser Science to Photonic Applications, San Jose, USA: CLEO, 2010: 1-2.
    [3] JAWORSKI P, YU F, MAIER R R J, et al..Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications[J].Opt.Express, 2013, 21(19):22742-22753. doi: 10.1364/OE.21.022742
    [4] KOLYADIN A.N, ALAGASHEV G K, PRYAMIKOV A D, et al..Negative curvature hollow-core fibers:dispersion properties and femtosecond pulse delivery[J].Physics Procedia, 2015, 73:59-66. doi: 10.1016/j.phpro.2015.09.122
    [5] MICHIELETTO M, LYNGSE J K, JAKOBSEN C, et al..Hollow-core fibers for high power pulse delivery[J].Opt.Express, 2016, 24(7):7103-7119. doi: 10.1364/OE.24.007103
    [6] POLETTI F.Nested antiresonant nodeless hollow core fiber[J].Opt.Express, 2014, 22(20):23807-23828. doi: 10.1364/OE.22.023807
    [7] HABIB M S, BANG O, BACHE M.Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements[J].Opt.Express, 2016, 24(8):8429-8436. doi: 10.1364/OE.24.008429
    [8] MENG F C, LIU B W, LI Y F, et al..Low loss hollow-core antiresonant fiber with nested elliptical cladding elements[J].IEEE Photonics Journal, 2017, 9(1):1-11.
    [9] 高寿飞, 汪莹莹, 刘小璐, 等.空芯反谐振光纤及其高功率超短脉冲传输[J].中国激光, 2017, 44(2):0201012.

    GAO SH F, WANG Y Y, LIU X L, et al..Hollow-core anti-resonant fiber and its use for propagation of high power ultrafast pulse[J].Chinese Journal of Lasers, 2017, 44(2):0201012.(in Chinese)
    [10] GEHBARDT M, GAIDA C, HEUERMANN T, et al..Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2μm wavelength[J].Optics Lett., 2017, 42(20):4179-4182. doi: 10.1364/OL.42.004179
    [11] AZHAR M, WONG G K L, CHANG W, et al..Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF[J].Opt.Express, 2013, 21(4):4405-4410. doi: 10.1364/OE.21.004405
    [12] GEROME F, DUPRIEZ P, CLOWES J, et al..High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling[J].Opt.Express, 2008, 16(4):2381-2386. doi: 10.1364/OE.16.002381
    [13] LU J, HUANG ZH Y, WANG D, et al..Nonlinear compression of picosecond chirped pulse from thin-disk amplifier system through a gas-filled hollow-core fiber[J].Chinese Physics B, 2016, 25(12):124207. doi: 10.1088/1674-1056/25/12/124207
    [14] GEBHARDT M, GAIDA C, STUTZKI F, et al..High average power nonlinear self-compression to few-cycle pulses at 2μm wavelength in antiresonant hollow-core fiber[C].Advanced Solid State Lasers Congress, Nagoya, Japan: ASSL, 2017: ATh3A.6.
    [15] ZURCH M, SOLLAPUR R, KARTASHOV D, et al..Multi-octave supercontinuum driven by soliton explosion in dispersion-designed antiresonant hollow-core fibers[C].Lasers and Electro-Optics, San Jose, USA: CLEO, 2017: 1-2.
    [16] GONZALEZ B N, TORRES G I, ARZATE N, et al..Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber[J].Opt.Express, 2013, 21(7):9132-9143. doi: 10.1364/OE.21.009132
    [17] LEGSGAARD J, ROBERTS P J.Dispersive pulse compression in hollow-core photonic bandgap fibers[J].Opt.Express, 2008, 16(13):9628-9644. doi: 10.1364/OE.16.009628
    [18] 乔自文, 高炳荣, 陈岐岱, 等.飞秒超快光谱技术及其互补使用[J].中国光学, 2014, 7(4):588-599. http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml

    QIAO Z W, GAO B R, CHEN Q D, et al..Ultrafast spectroscopy techniques and their complementary usages[J].Chinese Optics, 2014, 7(4):588-599.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml
    [19] EMAURY F, DUTIN C F, SARACENO C J, et al..Beam delivery and pulse compression to sub-50 fs of a mode locked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber[J].Opt.Express, 2013, 21(4):4986-4994. doi: 10.1364/OE.21.004986
    [20] MAK K F, SEIDEL M, PRONIN O, et al..Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages[J].Opt.Lett., 2015, 40(7):1238-1241. doi: 10.1364/OL.40.001238
    [21] AGRAWAL G P.Nonlinear Fiber Optics[M].Heidelberg:Springer Berlin Heidelberg, 2000.
    [22] DUGUAY M A, KOKUBUN Y, KOCH T L, et al..Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J].Appl.Phys.Lett., 2002, 49(18):1592-1594.
    [23] JOHN L.光导在折射率引导光纤、多孔光纤、光子带隙光纤和纳米线中的简要定性解释[J].中国光学, 2014, 7(3):499-508.(in English) http://www.chineseoptics.net.cn/CN/abstract/abstract9155.shtml

    JOHN L.Simple qualitative explanations for light guidance in index-guiding fibres, holey fibres, photonic band-gap fibres and nanowires[J].Chinese Optics, 2014, 7(3):499-508. http://www.chineseoptics.net.cn/CN/abstract/abstract9155.shtml
    [24] POLYANSKIY M N.Refractive index database.https://refractiveindex.info[OL].
    [25] SMITH A V, DO B T.Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm[J].Appl.Opt., 2008, 47(26):4812-4832. doi: 10.1364/AO.47.004812
    [26] 王竞, 李健中, 温伟峰, 等.利用自相关方法实现光脉冲时间延迟精确测量[J].中国光学, 2015, 8(2):270-276. http://html.rhhz.net/ZGGX/html/gx20150214.htm

    WANG J, LI J ZH, WEN W F, et al..Precisely measuring for optical pulse time delay using autocorrelation[J].Chinese Optics, 2015, 8(2):270-276.(in Chinese) http://html.rhhz.net/ZGGX/html/gx20150214.htm
    [27] 陈雪坤, 张璐, 吴志勇.空间激光与单模光纤和光子晶体光纤的耦合效率[J].中国光学, 2013, 6(2):208-215. http://www.chineseoptics.net.cn/CN/abstract/abstract8891.shtml

    CHEN X K, ZHANG L, WU ZH Y.Coupling efficiency of free-space laser coupling into single mode fiber and photonic crystal fiber[J].Chinese Optics, 2013, 6(2):208-215.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8891.shtml
  • 加载中
图(9)
计量
  • 文章访问数:  1957
  • HTML全文浏览量:  623
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 修回日期:  2018-03-16
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回