留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多光子皮肤成像技术及其应用

应亚宸 张广杰 贾荟琳 陆政元 石玉洁 席鹏

应亚宸, 张广杰, 贾荟琳, 陆政元, 石玉洁, 席鹏. 多光子皮肤成像技术及其应用[J]. 中国光学(中英文), 2019, 12(1): 104-111. doi: 10.3788/CO.20191201.0104
引用本文: 应亚宸, 张广杰, 贾荟琳, 陆政元, 石玉洁, 席鹏. 多光子皮肤成像技术及其应用[J]. 中国光学(中英文), 2019, 12(1): 104-111. doi: 10.3788/CO.20191201.0104
YING Ya-chen, ZHANG Guang-jie, JIA Hui-lin, LU Zheng-yuan, SHI Yu-jie, XI Peng. Multi-photon skin tissue imaging technology and its applications[J]. Chinese Optics, 2019, 12(1): 104-111. doi: 10.3788/CO.20191201.0104
Citation: YING Ya-chen, ZHANG Guang-jie, JIA Hui-lin, LU Zheng-yuan, SHI Yu-jie, XI Peng. Multi-photon skin tissue imaging technology and its applications[J]. Chinese Optics, 2019, 12(1): 104-111. doi: 10.3788/CO.20191201.0104

多光子皮肤成像技术及其应用

doi: 10.3788/CO.20191201.0104
基金项目: 

科技部重大仪器专项 2013YQ03065102

国家自然科学基金 61475010

国家自然科学基金 61729501

科技部重点研发专项 2013YQ03065102

详细信息
    作者简介:

    应亚宸(1997-), 女, 浙江台州人, 北京大学本科生, 2015年至今就读于北京大学工学院生物医学工程专业, 主要从事分子影像方面的研究。E-mail:yingyachen@pku.edu.cn

    张广杰(1994—),女,山东济南人,博士研究生,2017年于北京林业大学获得学士学位,现为北京大学工学院生物医学工程系博士研究生,主要从事光学成像、光声成像方面的研究。E-mail:jiezgm@126.com

    席鹏(1978—),男,博士,北京大学特聘研究员,主要从事超分辨显微成像方面的研究。E-mail:xipeng@pku.edu.cn

  • 中图分类号: O439

Multi-photon skin tissue imaging technology and its applications

Funds: 

National Instrument Development Special Program 2013YQ03065102

National Natural Science Foundation of China 61475010

National Natural Science Foundation of China 61729501

Ministry of Science and Technology of China, Key Research and Development Projects 2013YQ03065102

More Information
  • 摘要: 多光子成像技术是一种层析能力好、信噪比高的新型光学成像技术。在皮肤光学三维检测中,多光子技术已经应用于无创在体成像,且已得到产业化开发。本文将首先介绍多光子皮肤检测系统的若干核心技术,即双光子自发荧光技术、二次谐波成像技术、荧光寿命成像技术、相干反斯托克斯-拉曼成像技术等,然后简要介绍多光子成像系统在皮肤疾病成像检测上的应用,最后分析该系统的优势和未来可能的发展趋势。

     

  • 图 1  主要内源荧光分子的(a)激发光谱;(b)发射光谱[10]

    Figure 1.  (a)Excitation spectra; (b)emission spectra of primary endogenous fluorophores[10]

    图 2  健康人体皮肤活体成像,激发光波长760 nm:(a)角质层,0 μm深:角蛋白自发荧光信号;(b)颗粒层,20 μm深:角质细胞中的透明角质颗粒、NADPH、角蛋白自发荧光信号;(c)棘层,30 μm深:角质细胞密度增大;激发光波长800 nm; (d)真皮层,85 μm深:胶原蛋白、弹性蛋白自发荧光信号[11]

    Figure 2.  In vivo healthy human skin imaging with excitation wavelength of 760 nm:(a)Stratum corneum, 0 μm depth: auto-fluorescence signal of keratin; (b)Stratum granulosum, 20 μm depth: auto-fluorescence signal of keratohyalin granules, NADPH, and keratin in keratinocytes; (c)Stratum spinosum, 30 μm depth: increased cellular density of keratinocytes; 800 nm excitation wavelength: (d)Dermis, 85 μm depth: auto-fluorescence signal of collagen and elastin[11]

    图 3  (a) 双光子激发荧光(2PEF)和(b)二次谐波成像(SHG)的Jablonski图[12]

    Figure 3.  Jablonski image of (a)two-photon excitation fluorescence(2PEF) and (b)second harmonic generation(SHG)[12]

    图 4  真皮层中胶原蛋白纤维的SHG信号(蓝)与弹性蛋白纤维的自发荧光信号(绿)[14]

    Figure 4.  SHG signal of collagen fibers(blue) and autofluorescence signal of elastic fibers(green) in the dermis(Scale bar:20 μm)[14]

    图 5  不同深度皮肤组织自发荧光强度影像与荧光寿命影像对比.亚洲志愿者的:(a)颗粒层、(b)基底层;非洲志愿者的:(c)颗粒层、(d)基底层[16]

    Figure 5.  Contrast of auto-fluorescence intensity maps and lifetime color maps:Asian volunteer′s (a)stratum granulosum; (b)stratum basal; African volunteer′s (c)stratum granulosum; (d)stratum basal[16]

    图 6  相干反斯托克斯-拉曼(CARS)的Jablonski图:(a)拉曼散射; (b)受激拉曼散射; (c)相干反斯托克斯-拉曼

    Figure 6.  Jablonski image of coherent anti-Stokes Raman scattering(CARS):(a)Raman Scattering; (b)Stimulated Raman Scattering; (c)Coherent Anti-Stokes Raman Scattering

    图 7  健康人体皮肤活体成像:(a)CARS成像信号; (b)双光子激发荧光/SHG成像信号; (c)CARS-双光子激发荧光/SHG成像信号叠加[7]

    Figure 7.  In vivo skin imaging of healthy people:(a)CARS imaging signal; (b)two-photon excitation fluorescence/SHG imaging signal; (c)signal overlay of CARS- two-photon excitation fluorescence/SHG imaging[7]

    图 8  JenLab的多光子皮肤检测系统MPTflex[5]

    Figure 8.  Multi-photon skin screen system of JenLab—MPTflex[5]

    图 9  不同纤维形态的多光子层析成像图对比(左:SHG信号;右:自发荧光信号)[19]

    Figure 9.  Contrast of different fiber morphology MPT images (left: SHG signal; right: auto-fluorescence signal)[19]

  • [1] KONIG K, RIEMANN I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution[J]. J. Biomed Opt., 2003, 8(3):432-439. doi: 10.1117/1.1577349
    [2] ZHANG Y, HONG H, CAI W. Photoacoustic imaging[J]. Cold Spring Harb Protoc, 2011, 2011(9):1015-1025. http://d.old.wanfangdata.com.cn/Periodical/gzxb200507015
    [3] HUANG D, SWANSON E A, LIN C P, et al.. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181. doi: 10.1126/science.1957169
    [4] DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951):73-76. doi: 10.1126/science.2321027
    [5] KÖNIG K. Multiphoton Tomography[OL].[2018-02-20].http:www.mpt-tomography.de.
    [6] KÖNIG K. Clinical multiphoton tomography[J]. J. Biophotonics, 2008, 1(1):13-23. doi: 10.1002/(ISSN)1864-0648
    [7] BREUNIG H, WEINIGEL M, BVCKLE R, et al.. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber[J]. Laser Physics Letters, 2013, 10(2):025604. doi: 10.1088/1612-2011/10/2/025604
    [8] MONICI M. Cell and tissue autofluorescence research and diagnostic applications[J]. Biotechnol Annu Rev, 2005, 11:227-256. doi: 10.1016/S1387-2656(05)11007-2
    [9] 席鹏, 刘宇嘉, 姚志荣, 等.用于皮肤影像诊断的光学成像方法[J].中国激光, 2011, 38(2):7-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100094508

    XI P, LIU Y J, YAO ZH R, et al.. Optical imaging techniques in skin imaging diagnosis[J]. Chinese Journal of Lasers, 2011, 38(2):7-19.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100094508
    [10] JAMME F, KASCAKOVA S, VILLETTE S, et al.. Deep UV autofluorescence microscopy for cell biology and tissue histology[J]. Biol. Cell, 2013, 105(7):277-288. doi: 10.1111/boc.201200075
    [11] SEIDENARI S, ARGINELLI F, BASSOLI S, et al.. Multiphoton laser microscopy and fluorescence lifetime imaging for the evaluation of the skin[J]. Dermatol Res Pract, 2012, 2012:810749. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_68181436a763faeb55a9616ae70c9214
    [12] GIBSON E A, MASIHZADEH O, LEI T C, et al.. Multiphoton microscopy for ophthalmic imaging[J]. Journal of Ophthalmology, 2011, 2011:870879. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3022205
    [13] BALU M, ZACHARY C B, HARRIS R M, et al.. In Vivo multiphoton microscopy of basal cell carcinoma[J]. JAMA Dermatol, 2015, 151(10):1068-1074. doi: 10.1001/jamadermatol.2015.0453
    [14] TSAI T H, JEE S H, DONG C Y, et al.. Multiphoton microscopy in dermatological imaging[J]. J. Dermatol Sci., 2009, 56(1):1-8. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3233249
    [15] KÖNIG K. Fluorescence Lifetime Imaging[OL].[2018-02-20].http://mpt-tomography.de/fluorescence-lifetime-imaging.
    [16] DANCIK Y, FAVRE A, LOY C.J, et al.. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo[J]. J. Biomed Opt., 2013, 18(2):26022. doi: 10.1117/1.JBO.18.2.026022
    [17] WEINIGEL M, BREUNIG H G, KELLNER-HÖFER M, et al.. In vivo histology:optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography[J]. Laser Physics Letters, 2014, 11(5):055601. doi: 10.1088/1612-2011/11/5/055601
    [18] KÖNIG K. In-Vivo Clinical Applications[OL].[2018-02-20]. http://mpt-tomography.de/vivo-clinical-applications.
    [19] KOEHLER M J, HAHN S, PRELLER A, et al.. Morphological skin ageing criteria by multiphoton laser scanning tomography:non-invasive in vivo scoring of the dermal fibre network[J]. Exp. Dermatol, 2008, 17(6):519-523. doi: 10.1111/j.1600-0625.2007.00669.x
    [20] LIN S J, WU R, J R, TAN H Y, et al.. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy[J]. Opt. Lett., 2005, 30(17):2275-2277. doi: 10.1364/OL.30.002275
    [21] SONG W, XU Q, ZHANG Y, et al.. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo[J]. Sci. Rep., 2016, 6:32240. doi: 10.1038/srep32240
  • 加载中
图(9)
计量
  • 文章访问数:  3879
  • HTML全文浏览量:  1491
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-26
  • 修回日期:  2018-03-28
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!