留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Suppression of inter and intra channel four wave mixing effects in optical CDMA over DWDM hybrid system

Naif Alsowaidi Tawfig Eltaif Mohd Ridzuan Mokhtar

NaifAlsowaidi, TawfigEltaif, MohdRidzuan Mokhtar. DWDM混合光学系统中帧间和信道内四波混频效应的抑制[J]. 中国光学(中英文), 2019, 12(1): 156-166. doi: 10.3788/CO.20191201.0156
引用本文: NaifAlsowaidi, TawfigEltaif, MohdRidzuan Mokhtar. DWDM混合光学系统中帧间和信道内四波混频效应的抑制[J]. 中国光学(中英文), 2019, 12(1): 156-166. doi: 10.3788/CO.20191201.0156
Naif Alsowaidi, Tawfig Eltaif, Mohd Ridzuan Mokhtar. Suppression of inter and intra channel four wave mixing effects in optical CDMA over DWDM hybrid system[J]. Chinese Optics, 2019, 12(1): 156-166. doi: 10.3788/CO.20191201.0156
Citation: Naif Alsowaidi, Tawfig Eltaif, Mohd Ridzuan Mokhtar. Suppression of inter and intra channel four wave mixing effects in optical CDMA over DWDM hybrid system[J]. Chinese Optics, 2019, 12(1): 156-166. doi: 10.3788/CO.20191201.0156

DWDM混合光学系统中帧间和信道内四波混频效应的抑制

详细信息
  • 中图分类号: TN929.1

Suppression of inter and intra channel four wave mixing effects in optical CDMA over DWDM hybrid system

doi: 10.3788/CO.20191201.0156
Funds: 

Multimedia University(Malaysia), project SAP ID MMUI/160092

More Information
    Author Bio:

    Naif Alsowaidi was born in Yemen on December 30, 1987.He received the B.Eng.degree (with honors) in communication engineering from International Islamic University Malaysia (ⅡUM), in 2012 and the M.Sc.degree.in engineering science from Multimedia University (MMU), Malaysia, in 2015, currently he is a Ph.D.candidate at the Multimedia University.His current research interests include wireless communication, Optical CDMA systems, and nonlinear optics.E-mail:nas_201013@yahoo.com

    Tawfig Eltaif received his BSc degree in communication engineering from University of Tripoli, Libya, 2003, and MSc degree in microelectronics and PhD degree in micro-engineering & nanoelectronics from National University of Malaysia, Malaysia, 2005, 2009, respectively. He joined Photronix Technologies Company, 2008-2011, as a product and research engineer. Since 2012 he has been a senior lecturer at Multimedia University. His current research is focused on optical communication, optical frequency comb, FBG, and optical amplifiers

    Mohd Ridzuan Mokhtar received his PhD degree in optoelectronics from the University of Southampton, UK, in 2005. He is professor at the Faculty of Engineering, Multimedia University, Malaysia. He became a research fellow with City University London, UK, for a year in 2009, sponsored by the Technology Strategy Board in the UK. He has been the director of research and collaboration at Multimedia University since 2011. His main research interests include fiber optic sensors and optical communications

    Corresponding author: Tawfig Eltaif, E-mail:tefosat@ieee.org
  • 摘要: 本文提出了光码多分址(CDMA)和光密集波分复用(DWDM)的混合系统,全面研究了四波混频(FWM)的影响。在这个系统中,主要存在两个四波混频问题:包括多址干扰(MAI)和码间干扰(ISI)的帧间四波混频和信道内四波混频。结果表明,综合考虑信道间和信道内四波混频的影响,最佳发射功率可选为18 dBm。当发射功率大于18 dBm时,混合系统的误码率(BER)将增加。基于此,本文提出了一种电光相位调制器(EOPM)模块,将其放置在波分复用器之后,通过抑制信道内四波混频的影响,同时调制所有波长信号的相位,从而增加混合系统的非线性容限,这极大地改善了基于OOK传输的光学CDMA-DWDM混合系统的性能。此外,由于多对角线(MD)结构具有零互相关特性,通过使用多对角线识别序列码可以减少多址干扰的影响。结果还表明,CDMA技术与色散相结合有助于降低信道间四波混频的影响。此外,识别序列码间隔在减轻码间干扰中起着至关重要的作用,如结果所示,当识别序列码间隔压缩至比特持续时间的25%时,可以避免码间干扰,此时所提出的混合系统的性能最佳。

     

  • Figure 1.  Configuration of the hybrid system with the EOPM

    Figure 2.  Identification sequence code interval with respect to bit duration

    Figure 3.  BER versus transmitted power of random 6 wavelengths out of 15 wavelengths with 25 GHz spacing

    Figure 4.  BER versus transmitted power of random 6 wavelengths out of 15 wavelengths with 25 GHz spacing with the implementation of EOPM

    Figure 5.  BER versus transmission distance of random 6 channels out of 15 channels with the implementation of EOPM

    Table  1.   Hybrid system properties

    Parameter Value Parameter Value
    Number of channels M=15 Attenuation of SMF 0.2 dB/km
    Number of users in each channel N=8 Dispersion for SMF 16.75 ps/nm·km
    Length and weight of the sequence code F=24, w=3 Dispersion slope for SMF 0.075 ps/nm2·km
    Input transmitted power to the fiber 22 dBm Cross effective area for DCF 22 μm2
    Total channel length 105.075 km Dispersion for DCF -100 ps/nm·km
    Preamplifier gain 15 dB Dispersion slope for DCF -0.45 ps/nm2·km
    Channel spacing 25 GHz Attenuation of DCF 0.5 dB/km
    Cross effective area for SMF, 80 μm2 Data rate per channel 40 Gbps
    Nonlinear refractive index 2.6×10-20 m2/W Data rate per user 5 Gbps
    下载: 导出CSV
  • [1] AGRAWAL G. Nonlinear Fiber Optics[M]. 5th ed., Amsterdam:Academic Press, 2013:397-457.
    [2] CHRAPLYVY A R. Limitation on lightwave communication imposed by optical fiber nonlinarities[J]. J. Lightw. Technol., 1990, 8(10):1548-1557. doi: 10.1109/50.59195
    [3] GONG Z B, LU X, SHI K B, et al.. Nonlinear propagation of optical frequency comb and its application in phase noise detection[J]. Chinese Optics, 2015, 8(1):39-44. http://www.chineseoptics.net.cn/CN/abstract/abstract9259.shtml
    [4] TAMILARASAN I, SAMINATHAN B, MURUGAPPAN M. Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links[J]. Optics Communications, 2017, 385:87-91. doi: 10.1016/j.optcom.2016.10.045
    [5] ELLIS A, MCCARTHY M, AL KHATEEB M, et al.. Performance limits in optical communications due to fiber nonlinearity[J]. Advances in Optics and Photonics, 2017, 9(3):429-503. doi: 10.1364/AOP.9.000429
    [6] AL-KHATEEB M A Z, IQBAL M A, TAN M M, et al.. Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation[J]. Optics Express, 2018, 26(3):3145-3160. doi: 10.1364/OE.26.003145
    [7] INOUE K. Four-wave mixing in an optical fiber in the zero-Dispersion wavelength region[J]. J. Lightw. Technol., 1992, 10(11):1553-1561. doi: 10.1109/50.184893
    [8] FORZATI M, BERNTSON A, MARTENSSON J. Performance analysis of single-MZM APRZ transmitters[J]. J. Lightw. Technol., 2006, 24(5):2006-2014. doi: 10.1109/JLT.2006.871024
    [9] FORZATI M, BERNTSON A, MARTENSSON J. Asynchronous phase modulation for the suppression of IFWM[J]. J. Lightw. Technol., 2007, 25(10):2969-2975. doi: 10.1109/JLT.2007.904414
    [10] PECHENKIN V, FAIR IVAN J. On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module[J]. J. Lightw. Technol., 2011, 29(11):1678-1691. doi: 10.1109/JLT.2011.2138677
    [11] DU J, TENG Z, SHEN N. Semi-analytic modeling of FWM noise in dispersion-managed DWDM systems with DQPSK/DPSK/OOK channels[J]. Optics Communications, 2016, 358:180-189. doi: 10.1016/j.optcom.2015.07.052
    [12] CRUZ P, ALVES T, CARTAXO A. Virtual carrier-assisted DD-MB-OFDM schemes for UDWDM metro-access networks with improved tolerance to four-wave mixing[J]. J. Lightw. Technol., 2017, 35(20):4468-4478. doi: 10.1109/JLT.2017.2743818
    [13] JIANG L, YUAN X, CUI Y, et al.. Optical bistability and four-wave mixing in a hybrid optomechanical system[J]. Physics Letters A, 2017, 381(38):3289-3294. doi: 10.1016/j.physleta.2017.08.045
    [14] SINGH G, SINGH M. Spectral bandwidth-efficient four-wave mixing minimization scheme for C-band dense wavelength division multiplexed system[J]. Optical Engineering, 2017, 56(7):076115. doi: 10.1117/1.OE.56.7.076115
    [15] ABD T, ALJUNID S, FADHIL H, et al.. Impact of multi-diagonal code on high-speed spectral amplitude coding optical code division multiple-access networks[J]. Arabian Journal for Science and Engineering, 2012, 38(9):2389-2397.
    [16] SAFAR A, ALJUNID S, ARIEF A, et al.. Minimizing correlation effect using zero cross correlation code in spectral amplitude coding optical code division multiple access[J]. Optical Review, 2012, 19(1):20-24.
    [17] ELTAIF T, SHALABY H, HAJI SHAARI S, et al.. Analytical comparison of optical code-division multiple-access systems with and without a successive interference cancellation scheme using modified prime-sequence codes[J]. Optical Engineering, 2008, 47(9):095001. doi: 10.1117/1.2977525
    [18] SELEEM H, BENTRCIA A, FATHALLAH H. Penalised and doubly-penalised parallel/successive interference cancellation multi-user detectors for asynchronous upstream optical code division multiple access passive optical network[J]. IET Communications, 2014, 8(5):626-638. doi: 10.1049/iet-com.2013.0064
    [19] ALSOWAIDI N, ELTAIF T, MOKHTAR M. Performance analysis of SAC optical PPM-CDMA system-based interference rejection technique[J]. Journal of Optical Communications, 2016, 37(1):87-92.
    [20] ALSOWAIDI N, ELTAIF T, MOKHTAR M. A review on successive interference cancellation-based optical PPM-CDMA signaling[J]. Journal of Optical Communications, 2017, 38(1):57-62.
    [21] KITAYAMA K, WANG X, WADA N. OCDMA over WDM PON-solution path to gigabit-symmetric FTTH[J]. J. Lightw. Technol., 2006, 24(4):1654-1662. doi: 10.1109/JLT.2006.871030
    [22] WANG X, WADA N, MIYAZAKI T, et al.. Field Trial of 3-WDM 10-OCDMA 10.71-Gb/s asynchronous WDM/DPSK-OCDMA using hybrid E/D without FEC and optical thresholding[J]. J. Lightw. Technol., 2007, 25(1):207-215. doi: 10.1109/JLT.2006.887186
    [23] CHOI Y K, HANAWA M, WANG X, et al.. Upstream transmission of WDM/OCDM-PON in a loop-back configuration with remotely supplied short optical pulses[J]. Journal of Optical Communications and Networking, 2013, 5(3):183-189.
    [24] DENG Y H, FOK M P, PRUCNAL P R, et al.. All-optical code routing in interconnected optical CDMA and WDM ring networks[J]. Optics Letters, 2010, 35(21):3628-3630. doi: 10.1364/OL.35.003628
    [25] RODRIGUEZ DE LOS SANTOS G, HERNANDEZ J A, URUENA M, et al.. Study of a hybrid OCDMA-WDM segmented ring for metropolitan area networks[C]. 12th International Conference on High Performance Switching and Routing(HPSR), 2011: 83-88.
    [26] CHEN H, XIAO SH L, ZHU M, et al.. Hybrid WDMA/OCDM system with the capability of encoding multiple wavelength channels by employing one encoder and one corresponding optical code[J]. Chinese Optics Letters, 2010, 8(8):745-748. doi: 10.3788/COL
    [27] BOSCO, CARENA A, CURRI V, et al.. On the use of NRZ, RZ, and CSRZ modulation at 40 Gb/s with narrow DWDM channel spacing[J]. J. Lightw. Technol., 2002, 20(9):1694-1704. doi: 10.1109/JLT.2002.806309
    [28] RAMASWAMI R, SIVARAJAN K, SASAKI G. Optical Networks[M]. 3rd Ed., Amsterdam:Elsevier/Morgan Kaufmann, 2010:264-320.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2195
  • HTML全文浏览量:  684
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-07
  • 修回日期:  2018-04-25
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回