留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星上剩磁对惯性传感器的影响

柴国志 黄亮 乔亮 张冠茂

柴国志, 黄亮, 乔亮, 张冠茂. 星上剩磁对惯性传感器的影响[J]. 中国光学(中英文), 2019, 12(3): 515-525. doi: 10.3788/CO.20191203.0515
引用本文: 柴国志, 黄亮, 乔亮, 张冠茂. 星上剩磁对惯性传感器的影响[J]. 中国光学(中英文), 2019, 12(3): 515-525. doi: 10.3788/CO.20191203.0515
CHAI Guo-zhi, HUANG Liang, QIAO Liang, ZHANG Guan-mao. Effect of the on-board residual magnetism on inertial sensors[J]. Chinese Optics, 2019, 12(3): 515-525. doi: 10.3788/CO.20191203.0515
Citation: CHAI Guo-zhi, HUANG Liang, QIAO Liang, ZHANG Guan-mao. Effect of the on-board residual magnetism on inertial sensors[J]. Chinese Optics, 2019, 12(3): 515-525. doi: 10.3788/CO.20191203.0515

星上剩磁对惯性传感器的影响

doi: 10.3788/CO.20191203.0515
基金项目: 

中央高校基本科研业务费 lzujbky-2018-k11

详细信息
    作者简介:

    柴国志(1984-), 男, 河北邢台人, 副教授, 2006年、2012年于兰州大学分别获得物理学学士学位和凝聚态物理博士学位, 主要从事高频磁性材料、布里渊光散射和基于高频动力学的磁传感方面的研究。E-mail:chaigzh@lzu.edu.cn

    黄亮(1980—),男,河北保定人,教授,2002年、2005年于兰州大学分别获得物理学学士和理论物理硕士学位,2008年于亚利桑那州立大学获得电子工程系博士学位,主要从事统计物理与复杂系统方面的研究。E-mail:huangl@lzu.edu.cn

    乔亮(1981—),男,湖南岳阳人,副教授,2004年、2009年于兰州大学分别获得物理学学士和理论物理博士学位,主要从事磁模拟仿真、新型软磁吸波材料和磁屏蔽方面的研究。E-mail:qiaoliang@lzu.edu.cn

    张冠茂(1973—),男,甘肃正宁人,博士,副教授,1995年、1998年于兰州大学分别获得电子与信息科学系无线电物理专业理学学士和理学硕士学位,2007年于兰州大学信息科学与工程学院获得无线电物理专业理学博士学位,主要从事微纳光器件设计与应用及信息与通信电路设计方面的研究。E-mail:zhanggm@lzu.edu.cn

  • 中图分类号: TP394.1;TH691.9

Effect of the on-board residual magnetism on inertial sensors

Funds: 

the Fundamental Research Funds for the Central Universities lzujbky-2018-k11

More Information
  • 摘要: 空间引力波探测对剩余加速度的要求极高,达到了10-15 ms-2Hz-1/2量级,然而在空间引力波探测时,惯性传感器所在位置的环境磁场会带来磁场力和洛伦兹力。为保证引力波的正常探测,必须将环境磁场及磁场梯度控制在一定范围内。本文主要针对星上剩磁对惯性传感器的影响,从星际磁场、卫星部件剩磁和时变磁场探测等几个方面探讨了剩磁与加速度之间的关系,也对卫星磁场源模拟以及磁场探测方法进行了讨论。结果表明,通过对磁场源位置和方向进行优化可以降低直流剩磁,通过弱磁探测装置对星际磁场和时变磁场进行实时监控以排除磁场噪声影响,对于得到高精度的引力波探测数据是必不可少的。本文研究说明实施星上剩磁对惯性传感器的影响分析是有必要的,并且可以发展一套卫星平台剩磁评估方案和弱磁探测方法。

     

  • 图 1  左:Billingsley公司生产TFM100G4型三轴磁通门传感器照片,中图和右图分别为磁通门传感器的几何尺寸和示意图[21]

    Figure 1.  Left picture:billingsley tri-axial fluxgate magnetometer selected for LISA Pathfinder. Center and right: mechanical drawing and schematic of the inner sensor heads(X, Y and Z axis)

    表  1  LISA-Pathfinder检验质量基本参数[12]

    Table  1.   Basic parameters of TM of LISA-Pathfinder

    参数 数值
    质量(m)/kg 1.96
    边长(L)/m 0.046
    面积(A)/m2 2.12×10-4
    体积(V)/m3 9.73×10-5
    电导率(σ0)/m-1Ω-1 3.33×106
    磁化率(χ0) 2.5×10-5
    虚部磁化率(δχ) 3×10-7
    剩余磁矩(mr)/A·m2 2×10-8
    磁化率频率因子(τe)/s 1/(2π630)
    电荷数(q0) 1×107
    下载: 导出CSV

    表  2  LISA-Pathfinder任务中各磁场源数值[12]

    Table  2.   Magnetic sources of LISA-Pathfinder mission

    参数 数值
    卫星直流磁场分量/nT 144
    星际直流磁场分量/nT 10
    卫星磁场波动/nTHz-1/2 21
    星际磁场波动/nTHz-1/2 55
    卫星磁场梯度/nT m-1 11 500
    星际磁场梯度 0
    卫星磁场梯度波动/nT m-1 Hz-1/2 39
    下载: 导出CSV

    表  3  各类磁场噪声源对加速度噪声贡献[12]

    Table  3.   Contribution of various types of noise sources to the total acceleration noise

    参数 加速度噪声(m s-2 Hz-1/2)
    卫星磁场波动 0.680×10-15
    星际磁场波动 1.701×10-15
    卫星磁场梯度 1.097×10-15
    交流磁场贡献 1.265×10-15
    洛伦兹力贡献 0.013×10-15
    总计 2.775×10-15
    下载: 导出CSV

    表  4  可能用于空间弱磁场探测小型磁传感器

    Table  4.   Small magnetic sensors which can possibly be used for space weak magnetic field detection

    传感器 量程/μT 噪声密度/[nT·Hz-1/2]@1 Hz 精度/(V·mT-1) 尺寸/(mm×mm×mm)
    PCB-FG 50 0.02 120 33.5×15.6×0.9 [28]
    MicroFG 900 2.48 1.089 4.65×5.04[29]
    AMR 200 0.18 0.160 4×11.3×1.7[25]
    GMR 150 3 0.036 6×4.9×1.37[23]
    TMR 2 600 3.8 0.164 35×3×0.75[30]
    GMI 100 0.035 100 22.5×3[26]
    MI 17 0.003 68 10×0.8×0.5[27]
    CSAM 20 0.005 2.4 1.7×3.3×4.5[31]
    下载: 导出CSV
  • [1] DANZMANNK. LISA: Laser Interferometer Space Antenna[R]. A proposal in response to the ESA call for L3 mission concepts, ESA, 2017.
    [2] ABBOTT B P, ABBOTT R, ABBOTT T D, et al.. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116:061102. doi: 10.1103/PhysRevLett.116.061102
    [3] 黄双林, 龚雪飞, 徐鹏, 等.空间引力波探测——天文学的一个新窗口[J].中国科学:物理学力学天文学, 2017, 47(1):010404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004

    HUANG SH L, GONG X F, XU P, et al.. Gravitational wave detection in space-a new window in astronomy[J]. Scientia Sinica: Physica, Mechanica, Astronomica, 2017, 47(1):010404.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004
    [4] SANDERS J, DYNE A, GOULD K, et al.. LISA Pathfinder MC & Magnetic control Plan[R]. S2.ASU.PL.2010, 3, 1-25.
    [5] ARMANO M, AUOLEY H, AUGER G, et al.. Sub-femto-g free fall for space-based gravitational wave observatories:LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23):231101. doi: 10.1103/PhysRevLett.116.231101
    [6] WANNER G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3):200-202. doi: 10.1038/s41567-019-0462-3
    [7] GUO H, WU J. Space Science and Technology in China:A Roadmap to 2050[M]. Beijing:Science Press, 2010.
    [8] 龚雪飞, 徐生年, 袁业飞, 等.空间激光干涉引力波探测与早期宇宙结构形成[J].天文学进展, 2015, 33(1):59-83. doi: 10.3969/j.issn.1000-8349.2015.01.04

    GONG X F, XU SH N, YUAN Y F, et al.. Laser interferometric gravitational wave detection in space and structure formation in the early universe[J]. Progress in Astronomy, 2015, 33(1):59-83.(in Chinese) doi: 10.3969/j.issn.1000-8349.2015.01.04
    [9] LUO J, CHEN L S, DUAN H Z, et al. TianQin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
    [10] CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature, 2016, 531(7593):150-151. doi: 10.1038/531150a
    [11] SHAUL D N A, ARAUJ O H M, ROCHESTER G K, et al.. Evaluation of disturbances due to test mass charging for LISA[J]. Classical and Quantum Gravity, 2005, 22(10SI):S297-S309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=391be90896f39d607313e77b1f2bf68f
    [12] DIAZ-AGUIL M. Magnetic diagnostics algorithms for LISA pathfinder: system identification and data analysis[D]. Barcelona: Universitat Polit cnica de Catalunya, Institute of Space Studies of Catalonia(IEEC), 2011. http://www.ice.csic.es/view_event.php?EID=639
    [13] HUELLER M, ARMANO M, CARBONE L, et al.. Measuring the LISA test mass magnetic properties with a torsion pendulum[J]. Classical and Quantum Gravity, 2005, 22(10SI):S521-S526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c9d2f92e15d502c97413dc718404377
    [14] LOBO A, DIAZ-AGUIL M. Magnetic experiments on board the LTP[R]. Tech. Rep. S2-IEC-TN-3044, Catalunya: IEEC 2010.
    [15] DIAZ-AGUIL M, GARC A-BERRO E, LOBO A. LTP Magnetic Field Interpolation[R]. Tech. Rep. S2-IEC-OTH-3026, Catalunya: IEEC, 2008.
    [16] JUNGE A, MARLIANI F. Prediction of DC magnetic fields for magnetic cleanliness on spacecraft[C]. 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA 2011: 834-839. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6038424
    [17] MEHLEM K. Multiple magnetic dipole modeling and field prediction of satellites[J]. IEEE Transactions on Magnetics, 1978, 14(5):1064-1071. doi: 10.1109/TMAG.1978.1059983
    [18] SANDERS J, DYNE A, GOULD K, et al.. LISA pathfinder EMC & magnetic control plan[R]. Tech. Rep. S2-ASU-PL-2010, Hertfordshire: Astrium 2005.
    [19] Billingsley Aerospace & Defense. Spaceight Magnetometer Acceptance Router: TFM100G4[R]. Tech. Rep. SN 114-118, Billingsley, 2007.
    [20] 王嘉.基于磁通门技术的直流漏电流检测方法及实现[D].成都: 电子科技大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D00990944

    WANG J. Design and implementation of DC leakage current detection on fluxgate technology[D]. Chengdu: University of Electronic Science and Technology of China, 2016.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D00990944
    [21] MARTIN I M. Design and assessment of a low-frequency magnetic measurement system for eLISA[D]. Barcelona: Universitat Politecnica de Catalunya, Institute of Space Studies of Catalonia(IEEC), 2015.
    [22] KOELLE D. High transition temperature superconducting quantum interference devices:basic concepts, fabrication and applications[J]. Journal of Electroceramics, 1999, 3(2):195-212. doi: 10.1023/A:1009903428803
    [23] STUTZKE N A, RUSSEK S E, PAPPAS D P, et al.. Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors[J]. Journal of Applied Physics, 2005, 97(10):10Q107. doi: 10.1063/1.1861375
    [24] MultiDimension Technology Co., MMLP57F TMR Linear Sensor[R]. Tech. Rep. 1.3, 2015.
    [25] HONEYWELL, 1- and 2-Axis Magnetic Sensors HMC1001/1002/1021/1022[R]. Tech. Rep. 900248 Rev C, Honeywel, 2008.
    [26] DUFAY B, SAEZ S, DOLABDJIAN C, et al.. Development of a high sensitivity giant magneto-impedance magnetometer:comparison with a commercial flux-gate[J]. IEEE Transactions on Magnetics, 2013, 49(1):85-88. doi: 10.1109/TMAG.2012.2219579
    [27] UCHIYAMA T, HAMADA N, CAI C. Development of multicore magneto-impedance sensor for stable pico-Tesla resolution[C]. In Seventh International Conference on Sensing Technology, Wellington, New Zealand, 2013: 573-577.
    [28] JANOSEK M, RIPKA P. PCB sensors in fluxgate magnetometer with controlled excitation[J]. Sensors and Actuators A:Physical, 2009, 151(2):141-144. doi: 10.1016/j.sna.2009.02.002
    [29] CHONG L, JIAN L, ZHEN Y, et al.. Improved micro fluxgate sensor with double-layer Fe-based amorphous core[J]. Microsystem Technologies, 2013, 19(2):167-172. doi: 10.1007/s00542-012-1523-z
    [30] LUONG V, CHANG C, JENG J, et al.. Reduction of low-frequency noise in tunneling-magnetoresistance sensors with a modulated magnetic shielding[J]. IEEE Transactions on Magnetics, 2014, 50(11):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2176b180fd5d45fbe3d3e544512d45ce
    [31] SCHWINDT P D D, LINDSETH B, KNAPPE S, et al.. Chip-scale atomic magnetometer with improved sensitivity by use of the Mxtechnique[J]. Applied Physics Letters, 2007, 90(8):081102. doi: 10.1063/1.2709532
    [32] MATEOS I, RAMOS-CASTRO J, LOBO A. Low-frequency noise characterization of a magnetic field monitoring system using an anisotropic magnetoresistance[J]. Sensors and Actuators A:Physical, 2015, 235:57-63. doi: 10.1016/j.sna.2015.09.021
    [33] MATEOS I, SNCHEZ-M NGUEZ R, RAMOS-CASTRO J. Design of a CubeSat payload to test a magnetic measurement system for space-borne gravitational wave detectors[J]. Sensors and Actuators A:Physical, 2018, 273:311-316. doi: 10.1016/j.sna.2018.02.040
    [34] MOHRI K, KOHSAWA T, KAWASHIMA K, et al.. Magneto-inductive effect(MI effect) in amorphous wire[J]. IEEE Transactions on Magnetics, 1992, 28:3150-3152. doi: 10.1109/20.179741
    [35] MOHRI K, UCHIYAMA T, PANINA L V. Recent advances of micro magnetic sensors and sensing application[J]. Sensors and Actuators A:Physical, 1997, 59:1-8. doi: 10.1016/S0924-4247(97)80141-0
    [36] ATKINSON D, SQUIRE P T, MAYLIN M G, et al.. An integrating magnetic sensor based on the giant magneto-impedance effect[J]. Sensors and Actuators A:Physical, 2000, 81(1-3):82-85. doi: 10.1016/S0924-4247(99)00091-6
    [37] MOHRI K, UCHIYAMA T, SHEN L P, et al.. Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors(MI sensor and SI sensor) for intelligent measurements and controls[J]. Journal of Magnetism and Magnetic Materials, 2002, 249(1-2):351-356. doi: 10.1016/S0304-8853(02)00558-9
    [38] NESTERUK K, KUZMINSKI M, LACHOWICZ H K. Novel magnetic field meter based on giant magneto-impedance(GMI) effect[J]. Sensors & Transducers Magazine, 2006, 65:515-520. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001653317
    [39] YABUKAMI S, MAWATARI H, HORIKOSHI N, et al.. A design of highly sensitive GMI sensor[J]. Journal of Magnetism and Magnetic Materials, 2005, 290(2SI):1318-1321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80edabc8ced1652650e2631a7506e70c
    [40] HONKURA Y. Development of amorphous wire type MI sensors for automobile use[J]. Journal of Magnetism and Magnetic Materials, 2002, 249(1-2):375-381. doi: 10.1016/S0304-8853(02)00561-9
    [41] NISHIBE Y, YAMADERA H, OHTA N, et al.. Thin film magnetic field sensor utilizing magneto impedance effect[J]. Sensors and Actuators A:Physical, 2000, 82(1-3):155-160. doi: 10.1016/S0924-4247(99)00327-1
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  2121
  • HTML全文浏览量:  652
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-20
  • 修回日期:  2019-05-07
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!