留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高灵敏度下转换光学测温材料:NaGd(WO4)2:Yb3+/Er3+

李晓晓 李蕴乾 汪欣 杨艳民

李晓晓, 李蕴乾, 汪欣, 杨艳民. 高灵敏度下转换光学测温材料:NaGd(WO4)2:Yb3+/Er3+[J]. 中国光学, 2019, 12(3): 596-605. doi: 10.3788/CO.20191203.0596
引用本文: 李晓晓, 李蕴乾, 汪欣, 杨艳民. 高灵敏度下转换光学测温材料:NaGd(WO4)2:Yb3+/Er3+[J]. 中国光学, 2019, 12(3): 596-605. doi: 10.3788/CO.20191203.0596
LI Xiao-xiao, LI Yun-qian, WANG Xin, YANG Yan-min. Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+[J]. Chinese Optics, 2019, 12(3): 596-605. doi: 10.3788/CO.20191203.0596
Citation: LI Xiao-xiao, LI Yun-qian, WANG Xin, YANG Yan-min. Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+[J]. Chinese Optics, 2019, 12(3): 596-605. doi: 10.3788/CO.20191203.0596

高灵敏度下转换光学测温材料:NaGd(WO4)2:Yb3+/Er3+

doi: 10.3788/CO.20191203.0596
基金项目: 

国家自然科学基金 11474083

河北省自然科学基金 A2015201192

河北省教育厅科研项目 ZD2014069

详细信息
    作者简介:

    李晓晓(1995—),女,河北邯郸人,硕士研究生,2016年于河北师范大学获得学士学位,主要从事无机发光材料方面的研究。E-mai:leexiaoxiaolxx@163.com

    杨艳民(1972—),男,内蒙古赤峰人,博士,教授,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事无机发光材料方面的研究。E-mail:mihuyym@163.com

  • 中图分类号: O482.31

Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+

Funds: 

National Natural Science Foundation of China 11474083

Natural Science Foundation of Hebei Province A2015201192

Scientific Research Project of Hebei Education Department ZD2014069

More Information
  • 摘要: 基于Er3+的两个热耦合能级发光强度测量的荧光强度比测温技术由于不受光谱损失和激发强度波动的影响,故能够提供准确的非接触式温度测量。但目前通用的荧光强度比技术都是基于上转换激发,而上转换材料效率较低,测温不准确。考虑到Er3+能级可通过不同激发源来布居,本文利用高能光子激发的高效下转换光学测温方法,来解决上转换发光带来的问题,并以具有高测温灵敏度的钨酸盐NaGd(WO42为基质。研究发现,NaGd(WO42可成功用于下转换测温,Yb3+/Er3+共掺样品比Er3+单掺拥有更高的测温灵敏度,且下转换测温灵敏度要高于上转换,在掺杂浓度为20% Yb3+/1% Er3+时,测温灵敏度高达344.6×10-4 K-1。这证明了NaGd(WO42:Yb3+/Er3+是理想的测温材料,也很好地验证了其在高灵敏度下转换测温的可行性,为荧光强度比技术的应用开辟了新的前景。
  • 图  1  NaGd(WO4)2:1%Er3+及NaGd(WO4)2:1%Yb3+/1%Er3+样品的XRD图谱

    Figure  1.  XRD spectrum patterns of NaGd(WO4)2:1%Er3+ and NaGd(WO4)2:1%Yb3+/1%Er3+ samples

    图  2  (a) NaGd(WO4)2:1%Er3+的SEM图;(b)NaGd(WO4)2:1%Yb3+/1%Er3+的SEM图

    Figure  2.  (a)SEM image of NaGd(WO4)2:1%Er3+; (b)SEM image of NaGd(WO4)2:1%Yb3+/1%Er3+

    图  3  (a) 1%Er3+单掺杂样品处于不同温度(303 K, 433 K and 563 K)时的980 nm激发上转换发射谱;(b)1%Yb3+/1%Er3+共掺杂样品处于不同温度(303 K, 433 K and 563 K)时的980 nm激发上转换发射谱。图中均对552 nm处的峰进行了归一化

    Figure  3.  (a)UC spectra of 1%Er3+-doped sample at different temperatures(303 K, 433 K and 563 K) excited with 980 nm; (b)UC spectra of 1%Yb3+/1%Er3+ co-doped sample at different temperatures(303 K, 433 K and 563 K) excited with 980 nm. The spectra were normalized at 552 nm

    图  4  (a) 1%Er3+单掺杂样品在980 nm上转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(b)1%Er3+单掺杂样品在980 nm上转换激发下Ln(R)与1/T之间的线性关系;(c)1%Er3+单掺杂样品在980 nm上转换激发下测温灵敏度S与绝对温度T之间的曲线关系;(d)1%Yb3+/1%Er3+共掺杂样品在980 nm上转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(e)1%Yb3+/1%Er3+共掺杂样品在980 nm上转换激发下Ln(R)与1/T之间的线性关系;(f)1%Yb3+/1%Er3+共掺杂样品在980 nm上转换激发下测温灵敏度S与绝对温度T之间的曲线关系

    Figure  4.  (a)Relationship between R and absolute temperature T of 1%Er3+-doped sample under 980 nm(UC) excitation; (b)Monolog plot of R as a function of reciprocal absolute temperature of 1%Er3+-doped sample under 980 nm(UC) excitation; (c)Sensor sensitivity(S) as a function of the absolute temperature of 1%Er3+-doped sample under 980 nm(UC) excitation; (d)Relationship between R and absolute temperature T of 1%Yb3+/1%Er3+ co-doped sample under 980 nm(UC) excitation; (e)Monolog plot of R as a function of reciprocal absolute temperature of 1%Yb3+/1%Er3+ co-doped sample under 980 nm(UC) excitation; (f)Sensor sensitivity(S) as a function of absolute temperature of 1%Yb3+/1%Er3+ co-doped sample under 980 nm(UC) excitation

    图  5  (a) 1%Er3+单掺杂样品的X射线激发下转换发射谱;(b)1%Yb3+/1%Er3+共掺杂样品的X射线激发下转换发射谱

    Figure  5.  (a)DC emission spectrum of 1%Er3+-doped sample excited with X-ray; (b)DC emission spectrum of 1%Yb3+/1%Er3+ co-doped sample excited with X-ray

    图  6  (a) 1%Er3+单掺杂样品处于不同温度(303 K, 433 K and 563 K)时的X射线激发下转换发射谱;(b)1%Yb3+/1%Er3+共掺杂样品处于不同温度(303 K, 433 K and 563 K)时的X射线激发下转换发射谱。图中均对552 nm处的峰进行了归一化

    Figure  6.  (a)DC spectra of 1%Er3+-doped sample at different temperatures(303 K, 433 K and 563 K) excited with X-ray; (b)DC spectra of 1%Yb3+/1%Er3+ co-doped sample at different temperatures(303 K, 433 K and 563 K) excited with X-ray. The spectra were normalized at 552 nm

    图  7  (a) 1%Er3+单掺杂样品在X射线下转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(b)1%Er3+单掺杂样品在X射线下转换激发下Ln(R)与1/T之间的线性关系;(c)1%Er3+单掺杂样品在X射线下转换激发下测温灵敏度S与绝对温度T之间的曲线关系;(d)1%Yb3+/1%Er3+共掺杂样品在X射线下转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(e)1%Yb3+/1%Er3+共掺杂样品在X射线下转换激发下Ln(R)与1/T之间的线性关系;(f)1%Yb3+/1%Er3+共掺杂样品在X射线下转换激发下测温灵敏度S与绝对温度T之间的曲线关系

    Figure  7.  (a)Relationship between R and absolute temperature T of 1%Er3+-doped sample under X-ray(DC) excitation; (b)monolog plot of R as a function of reciprocal absolute temperature T of 1%Er3+-doped sample under X-ray(DC) excitation; (c)sensor sensitivity(S) as a function of absolute temperature of 1%Er3+-doped sample under X-ray(DC) excitation; (d)relationship between R and absolute temperature T of 1%Yb3+/1%Er3+ co-doped sample under X-ray(DC) excitation; (e)monolog plot of R as a function of reciprocal absolute temperature of 1%Yb3+/1%Er3+ co-doped sample under X-ray(DC) excitation; (f)sensor sensitivity(S) as a function of the absolute temperature of 1%Yb3+/1%Er3+ co-doped sample under X-ray(DC) excitation

    图  8  (a) x%Yb3+/1%Er3+(x=1, 5, 10, 15, 20)共掺杂样品在X射线下转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(b)x%Yb3+/1%Er3+(x=1, 5, 10, 15, 20)共掺杂样品在X射线下转换激发下测温灵敏度S与绝对温度T之间的曲线关系

    Figure  8.  (a)Relationship between R and absolute temperature T of x%Yb3+/1%Er3+(x=1, 5, 10, 15, 20) co-doped samples under X-ray(DC) excitation; (b)sensor sensitivity(S) as a function of absolute temperature for x%Yb3+/1%Er3+(x=1, 5, 10, 15, 20) co-doped samples under X-ray(DC) excitation

    表  1  Er3+在不同Yb3+/Er3+共掺基质中的最高测温灵敏度和计算荧光强度比中涉及到的参数B和ΔE/kB的大小,及每种材料达到最高测温灵敏度时所需温度和激发波长

    Table  1.   The fluorescence intensity ratio parameters and values of the maximum sensitivity of Er3+ in different Yb3+/Er3+ co-doped hosts, and temperatures for the maximum sensitivity as well as the excitation wavelength

    Host B ΔE/kB(K) SMAX(K-1) T/K Excitation wavelength/nm Ref.
    NaZnPO4 12.8 1 218.4 0.005 7 612 980 28
    Ba2LaF7 1.56 396.88 0.004 3 298 980 29
    CaF2 6.79 1 263.6 0.003 1 625 980 30
    KLu2F7 10.86 1 242 0.004 7 620 980 31
    La2(WO4)3 18.12 1 018.39 0.009 7 510 980 18
    NaY(WO4)2 29.2 1 073.6 0.014 5 530 980 19
    NaLa(MO4)2 24.78 1 035 0.013 1 510 980 32
    NaYF4 4.89 1 117.4 0.002 4 560 980 33
    GdF3 3 1 127 0.004 575 980 34
    NaGdF4 7.71 1 135 0.003 7 580 980 35
    silicate glass 3.65 592.6 0.003 3 286 978 36
    Yttrium silicate powders 3.65 817 0.005 6 400 975 37
    NaGd(WO4)2 27.11 1 178.32 0.034 46 539 X-ray 本文
    下载: 导出CSV
  • [1] ZHONG J S, CHEN D Q, PENG Y ZH, et al.. A review on nanostructured glass ceramics for promising application in optical thermometry[J]. Journal of Alloys & Compounds, 2018, 763:34-48. http://www.sciencedirect.com/science/article/pii/S0925838818320863
    [2] CAO J K, HU F F, CHEN L P, et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics[J]. Journal of Alloys & Compounds, 2017, 693:326-331.
    [3] WU Y F, SUO H, HE D, et al.. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ co-doped NaLa(MoO4)2 green phosphors[J]. Materials Research Bulletin, 2018, 106:14-18. doi: 10.1016/j.materresbull.2018.05.019
    [4] TIAN Y Y, TIAN Y, HUANG P, et al.. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route[J]. Chemical Engineering Journal, 2016, 297:26-34. doi: 10.1016/j.cej.2016.03.149
    [5] SUN ZH, LIU G F, FU Z L, et al.. Nanostructured La2O3:Yb3+/Er3+:temperature sensing, optical heating and bio-imaging application[J]. Materials Research Bulletin, 2017, 92:39-45. doi: 10.1016/j.materresbull.2017.04.005
    [6] 郑龙江, 高晓阳, 徐伟, 等.Tm3+, Yb3+共掺微晶玻璃蓝色上转换荧光的温度特性[J].发光学报, 2012, 33(9):944-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006

    ZHENG L J, GAO X Y, XU W, et al.. Temperature characteristic of blue up-conversion emission in Tm3+ , Yb3+ codoped oxyfluoride glass ceramic[J]. Chinese Journal of Luminescence, 2012, 33(9):944-948.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006
    [7] 吴中立, 吴红梅, 姚震, 等.GdNbO4:Er3+/Yb3+荧光粉的上转换发光与温度特性[J].发光学报, 2017, 38(9):1129-1135. http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007

    WU ZH L, WU H M, YAO ZH, et al.. Upconversion luminescence and temperature characteristics of GdNbO4:Er3+/Yb3+ phosphors[J]. Chinese Journal of Luminescence, 2017, 38(9):1129-1135.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007
    [8] 刘国锋, 付作岭.上转换纳米粒子CaF:Er3+, Yb3+的合成及其温敏特性[J].发光学报, 2017, 38(2):133-138. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htm

    LIU G F, FU Z L. Synthesis and temperature sensing of CaF:Er3+, Yb3+ nanoparticles with upconversion fluorescence[J]. Chinese Journal of Luminescence, 2017, 38(2):133-138.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htm
    [9] CAO J K, LI X M, WANG ZH X, et al.. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics[J]. Sensors & Actuators B:Chemical, 2016, 224:507-513. http://www.sciencedirect.com/science/article/pii/S0925400515305530
    [10] ZHOU J J, WEN SH H, LIAO J Y, et al.. Activation of the surface dark-layer to enhance upconversion in a thermal field[J]. Nature Photonics, 2018, 12(3):154-158. doi: 10.1038/s41566-018-0108-5
    [11] CHENG X R, YANG K, WANG J K, et al.. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material[J]. Optical Materials, 2016, 58:449-453. doi: 10.1016/j.optmat.2016.06.029
    [12] XU W J, LI D Y, HAO H Y, et al.. Optical thermometry through infrared excited green upconversion in monoclinic phase Gd2(MoO4)3:Yb3+ /Er3+ phosphor[J]. Optical Materials, 2018, 78:8-14. doi: 10.1016/j.optmat.2018.02.001
    [13] HAO Y X, LV SH CH, MA ZH J, et al.. Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry[J]. RSC Advances, 2018, 8(22):12165-12172. doi: 10.1039/C8RA01245H
    [14] ZHENG Y H, YOU H P, LIU K, et al.. Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+[J]. Cryst.Eng.Comm., 2011, 13(8):3001-3007. doi: 10.1039/c1ce05107e
    [15] TIAN Y, CHEN B J, YU H Q, et al.. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres[J]. Journal of Colloid & Interface Science, 2011, 360(2):586-592. http://www.sciencedirect.com/science/article/pii/S002197971100542X
    [16] DU P, LUO L H, YU J S. Upconversion emission, cathodo luminescence and temperature sensing behaviors of Yb3+ ions sensitized NaY(WO4)2:Er3+ phosphors[J]. Ceramics International, 2016, 42(5):5635-5641. doi: 10.1016/j.ceramint.2015.12.083
    [17] XU W, ZHANG ZH G, CAO W W. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4[J]. Optics Letters, 2012, 37(23):4865-4867. doi: 10.1364/OL.37.004865
    [18] YANG Y M, MI CH. Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3:Yb3+, Er3+ Phosphor[J]. Proc. of SPIE, 2013, 9044:904408. doi: 10.1117/12.2036247
    [19] ZOU Z SH, WU T, LU H, et al.. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals[J]. Rsc Advances, 2018, 8(14):7679-7686. doi: 10.1039/C8RA00190A
    [20] YANG Y M, MI CH, JIAO F, et al.. A novel multifunctional upconversion phosphor: Yb3+/Er3+ codoped La2S3[J]. Journal of the American Ceramic Society, 2014, 97(6):1769-1775. doi: 10.1111/jace.12822
    [21] CHEN H Y, WANG F L, MOORE T L, et al.. Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications[J]. Journal of Materials Chemistry B, 2017, 5(27):5412-5424. doi: 10.1039/C7TB01289F
    [22] CHEN H M, SUN X L, WANG G D, et al.. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors[J]. Materials Horizons, 2017, 4(6):1092-1101. doi: 10.1039/C7MH00442G
    [23] XUE ZH L, LI X L, LI Y B, et al.. X-ray activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22132-22142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cfd6466217b6abdb5d88f9eabcd44e6
    [24] MAURICE E, MONNOM G, DUSSARDIER B, et al.. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors[J]. Applied Optics, 1995, 34(34):8019-8025. doi: 10.1364/AO.34.008019
    [25] SHINN M D, SIBLEY W A, DREXHAGE M G, et al.. Optical transitions of Er3+ ions in fluorozirconate glass[J]. Physical Review B, 1983, 27(11):6635-6648. doi: 10.1103/PhysRevB.27.6635
    [26] WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. Journal of Applied Physics, 2003, 94(8):4743-4756. doi: 10.1063/1.1606526
    [27] MACIEL G S, MENEZES L D, GOMES A S L, et al.. Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate Glass[J]. IEEE Photonics Technology Letters, 1995, 7(12):1474-1476. doi: 10.1109/68.477287
    [28] CHEN Y, CHEN G H, LIU X Y, et al.. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped transparent phosphate glass-ceramics[J]. Journal of Luminescence, 2018, 195:314-320. doi: 10.1016/j.jlumin.2017.11.049
    [29] YU H, LI S, QI Y SH, et al.. Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix[J]. Journal of Luminescence, 2018, 194:433-439. doi: 10.1016/j.jlumin.2017.10.014
    [30] CAI J J, WEI X T, HU F F, et al.. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals[J]. Ceramics International, 2016, 42(12):13990-13995. doi: 10.1016/j.ceramint.2016.06.002
    [31] CAO J K, CHEN W P, XU D K, et al.. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics[J]. Journal of Luminescence, 2018, 194:219-224. doi: 10.1016/j.jlumin.2017.10.020
    [32] HE D, GUO CH F, ZHOU SH SH, et al.. Synthesis and thermometric properties of shuttle-like Er3+/Yb3+ co-doped NaLa(MoO4)2 microstructures[J]. CrystEngComm, 2015, 17(40):7745-7753. doi: 10.1039/C5CE01216C
    [33] JIANG SH, ZENG P, LIAO L Q, et al.. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals[J]. Journal of Alloys and Compounds, 2014, 617:538-541. doi: 10.1016/j.jallcom.2014.08.080
    [34] CHEN D Q, LIU SH, LI X Y, et al.. Gd-based oxyfluoride glass ceramics:phase transformation, optical spectroscopy and upconverting temperature sensing[J]. Journal of the European Ceramic Society, 2017, 37(13):4083-4094. doi: 10.1016/j.jeurceramsoc.2017.05.006
    [35] CHEN D Q, WAN ZH Y, ZHOU Y, et al.. Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4, nanocrystals:phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior[J]. Journal of Alloys & Compounds, 2015, 638:21-28. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234599393/
    [36] LI CH R, DONG B, LI SH F, et al.. Er3+-Yb3+ co-doped silicate glass for optical temperature sensor[J]. Chemical Physics Letters, 2007, 443(4-6):426-429. doi: 10.1016/j.cplett.2007.06.081
    [37] RAKOV N, MACIEL G S. Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders[J]. Sensors & Actuators:B. Chemical, 2012, 164(1):96-100. https://www.sciencedirect.com/science/article/pii/S0925400512001116
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  217
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-08
  • 修回日期:  2018-12-07
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回