留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属等离子激元调控Fabry-Perot微腔谐振模式研究

马光辉 张家斌 张贺 金亮 王灌鑫 徐英添

马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添. 金属等离子激元调控Fabry-Perot微腔谐振模式研究[J]. 中国光学(中英文), 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649
引用本文: 马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添. 金属等离子激元调控Fabry-Perot微腔谐振模式研究[J]. 中国光学(中英文), 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649
MA Guang-hui, ZHANG Jia-bin, ZHANG He, JIN Liang, WANG Guan-xin, XU Ying-tian. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649
Citation: MA Guang-hui, ZHANG Jia-bin, ZHANG He, JIN Liang, WANG Guan-xin, XU Ying-tian. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649

金属等离子激元调控Fabry-Perot微腔谐振模式研究

基金项目: 

国家自然基金青年基金项目 21707010

吉林省优秀青年基金 20180520194JH

长春理工大学创新基金项目 XJJLG-2016-07

详细信息
    作者简介:

    马光辉(1992-), 男, 陕西渭南人, 硕士研究生, 2016年于长春理工大学光电信息学院获得学士学位, 主要从事光电子技术及应用方面的研究。E-mail:553761365@qq.com

    徐英添(1986-), 男, 吉林长春人, 硕士生导师, 副研究员, 2008年于长春理工大学获得学士学位, 2014年于吉林大学获得博士学位, 主要从事光电子技术及应用方面的研究。E-mail:xyt@cust.edu.cn

  • 中图分类号: O437

Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons

Funds: 

National Natural Foundation-Youth Foundation Project 21707010

the Excellent Youth Foundation of Jilin Province 20180520194JH

Changchun University of Science and Technology Innovation Foundation Project XJJLG-2016-07

More Information
  • 摘要: 目前,利用氧化锌(ZnO)微纳米线结构形成具有自然谐振腔的紫外激光器件引起国内外广泛关注。针对ZnO本征缺陷导致器件发光及稳定性不足等问题,开展金属局域等离子激元局域场发光增强方面的研究,对ZnO基紫外激光器件的应用具有十分重要的意义。本文通过理论仿真构建氧化锌微米线结构模型,对微腔光学损耗及Fabry-Perot(F-P)谐振腔模式演化进行了理论分析。得到ZnO微腔直径变化与F-P谐振模式演化、光学损耗和光强分布的关系。在此基础上通过金属Ag纳米颗粒对ZnO微米线6个表面进行修饰,发现金属局域表面等离子激元共振耦合效应对微腔周围的损耗光有明显的抑制作用,并且在金属与微腔的交叉区通过共振耦合效应实现局域场增强。模拟结果表明,在损耗较大的微腔表面修饰Ag纳米颗粒以后,光场限域能力提高6.72%,而在金属颗粒之间沿X轴方向产生二次耦合现象,其电场强度更有2倍的增强效果。

     

  • 图 1  (a) 类F-P激光腔结构示意图;(b)激光在ZnO微腔中传播的示意图

    Figure 1.  (a)Structure diagram of an F-P laser cavity; (b)schematic diagram of laser propagation in ZnO microcavity

    图 2  (a) 局域表面等离子激元振荡图;(b)传播表面等离子激元图

    Figure 2.  (a)Localized surface plasmon oscillations; (b)spread surface plasmon

    图 3  不同直径时的(x, y),(x, z)面电场分布图

    Figure 3.  The electric field distributions of (x, y), (x, z) planes of the ZnO micro-wires with different diameters

    图 4  (a) 不同腔径对应的光强曲线;(b)随腔径变化的光限制效率图

    Figure 4.  (a)Light intensity curves corresponding to different cavity diameters; (b)light-confinement efficiency varies with cavity diameter

    图 5  不同直径时的ZnO F-P激光腔共振谱图

    Figure 5.  ZnO F-P laser resonant spectra with different diameters

    图 6  Ag纳米颗粒修饰的LSPR微腔的模拟示意图和对应电场分布

    Figure 6.  Simulation diagram of LSPR microcavity modified by Ag nanoparticles and corresponding electric field distributions

    图 7  Ag纳米颗粒修饰微腔的电场强度分布图

    Figure 7.  Distribution of the electric field intensity of the Ag nanoparticle modified microcavity

    图 8  Ag纳米颗粒装饰ZnO微米线的局部电场图

    Figure 8.  Local electric field diagrams of Ag nanoparticle modified ZnO microwire

    图 9  (a) 随装饰面数目变化的光强曲线;(b)随装饰面数目变化的光限制效率图

    Figure 9.  (a)Light intensity curve as a function of the number of decorative surface; (b)light confinement efficiency map as a function of the number of decorative surfaces

    图 10  D=2时无Ag颗粒装饰和有Ag颗粒装饰时ZnO微腔的谐振谱图

    Figure 10.  Resonance spectra of ZnO microcavity without and with Ag particle decoration when D=2

  • [1] HUANG M H, MAO S, FEICK H, et al.. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523):1897-1899. doi: 10.1126/science.1060367
    [2] 申德振, 梅增霞, 梁会力, 等.氧化锌基材料、异质结构及光电器件[J].发光学报, 2014, 35(1):1-60. http://d.old.wanfangdata.com.cn/Periodical/fgxb201401001

    SHEN D ZH, MEI Z X, LIANG H L, et al.. ZnO-based matierial, heterojunction and photoelctronic device[J]. Chinese Journal of Luminescence, 2014, 35(1):1-60.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201401001
    [3] 陈国炜, 朱荣.基于氧化锌纳米线的硅谐振式加速度计(英文)[J].光学 精密工程, 2009, 17(6):1279-1285. doi: 10.3321/j.issn:1004-924X.2009.06.014

    CHEN G W, ZHU R. Silicon micromachined resonant accelerometer based on ZnO nanowire[J]. Opt. Precision Eng., 2009, 17(6):1279-1285.(in Chinese) doi: 10.3321/j.issn:1004-924X.2009.06.014
    [4] VASILYEV N, NOVIKOV B V, AKOPYAN I K, et al.. ZnO-based random lasing on nanoparticles realized by laser induced breakdown[J]. Journal of Luminescence, 2017, 182:45-48. doi: 10.1016/j.jlumin.2016.10.012
    [5] RIGHINI G C, BERNESCHI S, COSCI A, et al.. Advanced Sensing by WGM Microresonators[C]. Proceedings of Optical Sensors 2017, Optical Society of America, 2017: SeM2E.5.
    [6] 王马华, 朱光平, 朱汉清, 等.氧化锌纳米棒中自发辐射的回音壁模腔增强[J].中国激光, 2012, 39(7):154-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201207027

    WANG M H, ZHU G P, ZHU H Q, et al.. Enhancement for spontaneous emission from ZnO hexagonal microrods based on whispering gallery mode resonators[J]. Chinese Journal of Lasers, 2012, 39(7):154-159.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201207027
    [7] DONG H X, ZHOU B E, LI J ZH, et al.. Ultraviolet lasing behavior in ZnO optical microcavities[J]. Journal of Materiomics, 2017, 3(4):255-266. doi: 10.1016/j.jmat.2017.06.001
    [8] MAIER S A. Plasmonics:Fundamentals and Applications[M]. New York:Springer, 2007.
    [9] YAN R X, GARGAS D, YANG P D. Nanowire photonics[J]. Nature Photonics, 2009, 3(10):569-576. doi: 10.1038/nphoton.2009.184
    [10] WANG Y Y, QIN F F, LU J F, et al.. Plasmon enhancement for Vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities[J]. Nano Research, 2017, 10(10):3447-3456. doi: 10.1007/s12274-017-1556-9
    [11] LONG H, GU J H, WANG H N, et al.. Numerical study of enhanced performance in ZnO-based ultraviolet light-emitting diodes with step graded-composition MgZnO multiple quantum barriers[J]. Superlattices & Microstructures, 2017, 190:821-828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45b2494a29659941c24f5c77437fadb3
    [12] CHEN T, XING G Z, ZHANG Z, et al.. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles[J]. Nanotechnology, 2008, 19(43):435711. doi: 10.1088/0957-4484/19/43/435711
    [13] CHENG P H, LI D SH, YUAN ZH ZH, et al.. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film[J]. Applied Physics Letters, 2008, 92(4):041119. doi: 10.1063/1.2839404
    [14] 于旭东, 雷雯, 刘畅.随机振动下光学谐振腔腔体形变及变动规律[J].光学 精密工程, 2017, 25(2):281-288. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201702001

    YU X D, LEI W, LIU CH. Deformation law of optical resonant cavity under random vibration environment[J]. Opt. Precision Eng., 2017, 25(2):281-288.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201702001
    [15] 周炳琨, 高以智, 陈家骅, 等.激光原理[M].北京:国防工业出版社, 2004:20-76.

    ZHOU B K, GAO Y ZH, CHEN J H, et al.. Laser Principle[M]. Beijing:The National Defense Press, 2004:20-76.(in Chinese)
    [16] 赫光生, 王润文, 王明常.激光物理学[M].上海:上海人民出版社, 1975:95-140.

    HAO G SH, WANG R W, WANG M CH. Laser Physics[M]. Shanghai:Shanghai People′s Press, 1975:95-140.(in Chinese)
    [17] 邹英华, 孙碧亨.激光物理学[M].北京:北京大学出版社, 1991:68-75.

    ZHOU Y H, SUN B H. Laser Physics[M]. Beijing:Beijing University Press, 1991:68-75.(in Chinese)
    [18] 任升, 刘丽炜, 李金华, 等.纳米尺度下的局域场增强研究进展[J].中国光学, 2018, 11(1):31-46. http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml

    REN SH, LIU L W, LI J H, et al.. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1):31-46.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml
    [19] CAO R X, ZHANG X P, MIAO B F, et al.. From self-assembly to quantum guiding:a review of magnetic atomic structures on noble metal surfaces[J]. Chinese Physics B, 2014, 23(3):038102. doi: 10.1088/1674-1056/23/3/038102
    [20] 王雪飞, 卢振武, 王泰升, 等.超表面上表面等离激元波的光栅衍射行为研究[J].中国光学, 2018, 11(1): 60-73. http://www.chineseoptics.net.cn/CN/abstract/abstract9534.shtml

    WANG X F, LU ZH W, WANG T SH, et al.. Grating diffractive behavior of surface plasmon wave on meta-surface[J]. Chinese Optics, 2018, 11(1):60-73.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9534.shtml
    [21] GARGAS D J, TOIMIL-MOLARES M E, YANG P D. Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy[J]. Journal of the American Chemical Society, 2009, 131(6):2125-2127. doi: 10.1021/ja8092339
    [22] KIM J, KIM S, BAHL G. Complete linear optical isolation at the microscale with ultralow loss[J]. Scientific Reports, 2017, 7:1647. doi: 10.1038/s41598-017-01494-w
    [23] WANG Y Y, XU C X, JIANG M M, et al.. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect[J]. Nanoscale, 2016, 8(37):16631-16639. doi: 10.1039/C6NR04943E
    [24] 贾博仑, 邓玲玲, 陈若曦, 等.利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究[J].物理学报, 2017, 66(23):237801. doi: 10.7498/aps.66.237801

    JIA B L, DENG L L, CHEN R X, et al.. Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles[J]. Acta Physica Sinica, 2017, 66(23):237801.(in Chinese) doi: 10.7498/aps.66.237801
    [25] SINGH S K, SINGHAL R. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications[J]. Applied Surface Science, 2018, 439:919-926. doi: 10.1016/j.apsusc.2018.01.112
  • 加载中
图(10)
计量
  • 文章访问数:  3464
  • HTML全文浏览量:  1165
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-11
  • 修回日期:  2018-07-05
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回