留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成PIN光敏元的CMOS探测器光电响应特性研究

杨成财 鞠国豪 陈永平

杨成财, 鞠国豪, 陈永平. 集成PIN光敏元的CMOS探测器光电响应特性研究[J]. 中国光学(中英文), 2019, 12(5): 1076-1089. doi: 10.3788/CO.20191205.1076
引用本文: 杨成财, 鞠国豪, 陈永平. 集成PIN光敏元的CMOS探测器光电响应特性研究[J]. 中国光学(中英文), 2019, 12(5): 1076-1089. doi: 10.3788/CO.20191205.1076
YANG Cheng-cai, JU Guo-hao, CHEN Yong-ping. Study on the photo response of a CMOS sensor integrated with PIN photodiodes[J]. Chinese Optics, 2019, 12(5): 1076-1089. doi: 10.3788/CO.20191205.1076
Citation: YANG Cheng-cai, JU Guo-hao, CHEN Yong-ping. Study on the photo response of a CMOS sensor integrated with PIN photodiodes[J]. Chinese Optics, 2019, 12(5): 1076-1089. doi: 10.3788/CO.20191205.1076

集成PIN光敏元的CMOS探测器光电响应特性研究

doi: 10.3788/CO.20191205.1076
详细信息
  • 中图分类号: TN2;O472+.8

Study on the photo response of a CMOS sensor integrated with PIN photodiodes

More Information
    Author Bio:

    YANG Cheng-cai (1992-):Tai'An, Shandong Province, Graduated from Northeastern University in 2016, and currently pursuing a master's degree in Shanghai Institute of Technical Physics, Chinese Academy of Sciences.He mainly engages in the research of CMOS image sensor design and read-out circuits design.E-mail:tomasyoung@mail.ustc.edu.cn

    CHEN Yong-ping (1963-):Professor, Shanghai Institute of Technical Physics, Chinese Academy of Sciences.His research interests are on design of high-performance CMOS image sensors.E-mail:chen_yp@mail.sitp.ac.cn

    Corresponding author: CHEN Yong-ping, E-mail:chen_yp@mail.sitp.ac.cn
  • 摘要: 传统的CMOS图像传感器一般采用基于LV-CMOS工艺的N阱/P型衬底制备的PN光电二极管或者PPD二极管作为光敏元。PIN光敏元具有结电容小、量子效率高的特点。采用HV-CMOS(高压CMOS)工艺可以实现CMOS电路与PIN光敏元的单片集成。本文研究了集成PIN光敏元的CMOS探测器的光电响应特性以及NEP随像素大小和复位电压的变化关系。研究表明,将光敏元从PN光电二极管改为PIN光电二极管后,像素电荷增益可以提高一个数量级左右;同时,像素的瞬态电荷增益要大于传统认为的1/Cpd,并与二极管的大小以及复位电压紧密相关。研究发现,小像素因其更高的电荷增益和更低的等效噪声,更加适合弱信号下的短积分时间快速探测。若配合微透镜的使用,小像素在微光探测方面可以获得更大的优势。

     

  • 图 1  HV-CMOS工艺示意图

    Figure 1.  Schematic diagram of HV-CMOS process

    图 2  PIN光敏元与CMOS电路单片集成

    Figure 2.  Monolithic integration of PIN photosensitive element and CMOS circuit

    图 3  HV-CMOS工艺中的3T像素结构

    Figure 3.  3T pixel structure in HV-CMOS process

    图 4  CMOS传感器读出电路

    Figure 4.  Read-out circuit in CMOS sensor

    图 5  PN和PIN空间电荷区

    Figure 5.  Space charge regions of PN and PIN

    图 6  结电容随偏压变化关系

    Figure 6.  Relationship between junction capacitance and bias voltage

    图 7  结电容与像素大小的关系

    Figure 7.  Relationship between junction capacitance and pixel size

    图 8  暗电流与偏置电压大小的关系

    Figure 8.  Relationship between dark current and bias voltage

    图 9  暗电流与尺寸L的变化关系

    Figure 9.  Relationship between dark current and pixel size

    图 10  结电压与光电流关系

    Figure 10.  Relationship between junction voltage and photo current

    图 11  光信号电压变化与光电流关系

    Figure 11.  Relationship between photo signal voltage variation and photo current

    图 12  瞬态电荷转换增益随光电流变化关系

    Figure 12.  Relationship between transient charge conversion gain and photo current variance

    图 13  瞬态电荷增益与电容值倒数的比较

    Figure 13.  Comparison between transient charge gain and the reciprocal of capacitance value

    图 14  CTIA结构示意图

    Figure 14.  Schematic diagram of a CTIA structure

    图 15  NEP与像素大小的关系

    Figure 15.  Relationship between NEP and pixel size

    表  1  公式参数

    Table  1.   Formula parameters

    Parameter PN photodiode(LV-CMOS) PIN photodiode(HV-CMOS)
    Area junction capacitance for zero bias:CJ 97 pF/mm2 0.93 pF/mm2
    Area capacitance grading coefficient:MJ 0.31 0.05
    Area capacitance junction potentials:PB 0.42 V 0.31 V
    Perimeter junction capacitance for zero bias:CJSW 0.52 pF/mm 0.35 pF/mm
    Perimeter capacitance grading coefficient:MJSW 0.21 0.21
    Perimeter capacitance junction potentials:PBSW 0.38 V 0.16 V
    Area leakage current density:JS 1.27 pA/mm2 2.07 pA/mm2
    Perimeter leakage current density:JSSW 28.8 fA/mm 2.91 pA/mm
    Voltage dependent area leakage conductivity:GLEAK 0 pA/V/mm2 0 pA/V/mm2
    Voltage dependent perimeter leakage conductivity:GLEAKSW 44 fA/V/mm 1.29 pA/V/mm
    下载: 导出CSV
  • [1] 何家维, 何昕, 魏仲慧, 等.高灵敏度EMCCD导航相机的设计[J].光学 精密工程, 2018, 26(12):3019-3027. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201812019

    HE J W, HE X, WEI ZH H, et al.. Design of high-sensitivity EMCCD navigation camera[J]. Opt. Precision Eng., 2018, 26(12):3019-3027.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201812019
    [2] 何伟基, 司马博羽, 程耀进, 等.基于盖格-雪崩光电二极管的光子计数成像[J].光学 精密工程, 2012, 20(8):1831-1837. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201208025

    HE W J, SIMA B Y, CHENG Y J, et al.. Photon counting imaging based on GM-APD[J]. Opt. Precision Eng., 2012, 20(8):1831-1837.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201208025
    [3] 刘超, 张晓晖.超低照度下微光图像的深度卷积自编码网络复原[J].光学 精密工程, 2018, 26(4):951-961. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201804025

    LIU CH, ZHANG X H. Deep convolutional autoencoder networks approach to low-light level image restoration under extreme low-light illumination[J]. Opt. Precision Eng., 2018, 26(4):951-961.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201804025
    [4] 陈莹, 朱明, 刘剑, 等.高斯混合模型自适应微光图像增强[J].液晶与显示, 2015, 30(2):300-309. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201502019

    CHEN Y, ZHU M, LIU J, et al.. Automatic low light level image enhancement using Gaussian mixture modeling[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(2):300-309.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201502019
    [5] 王田珲, 李豫东, 文林, 等.CMOS图像传感器在质子辐照下热像素的产生和变化规律[J].发光学报, 2018, 39(12):1697-1704. http://d.old.wanfangdata.com.cn/Periodical/fgxb201812008

    WANG T H, LI Y D, WEN L, et al.. Generation and annealing of hot pixels of CMOS image sensor induced by proton[J]. Chinese Journal of Luminescence, 2018, 39(12):1697-1704.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201812008
    [6] 玛丽娅, 李豫东, 郭旗, 等.CMOS有源像素图像传感器的电子辐照损伤效应研究[J].发光学报, 2017, 38(2):182-187. http://d.old.wanfangdata.com.cn/Periodical/fgxb201702009

    MA L Y, LI Y D, GUO Q, et al.. Electron beam radiation effects on CMOS active pixel sensor[J]. Chinese Journal of Luminescence, 2017, 38(2):182-187.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201702009
    [7] 徐守龙, 邹树梁, 黄有骏, 等.CCD与CMOS像素传感器γ射线电离辐射响应特性对比研究[J].发光学报, 2018, 39(6):815-822. http://d.old.wanfangdata.com.cn/Periodical/fgxb201806010

    XU SH L, ZOU SH L, HUANG Y J, et al.. Comparative study on γ-ray radiation response characteristics of CCD and CMOS pixel sensor[J]. Chinese Journal of Luminescence, 2018, 39(6):815-822.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201806010
    [8] 施敏, 伍国珏.半导体器件物理[M].耿莉, 张瑞智, 译.西安: 西安交通大学出版社, 2008.

    SHI M, WU G Y. Physics of Semiconductor[M]. GENG L, ZHANG R ZH, trans. Xi'an: Xi'an JiaoTong University Press, 2008.(in Chinese)
    [9] MARUYAMA T, MAEKITA K, LI G, et al.. High speed operation of SOI PIN photodiodes fabricated by CMOS compatible process[C]. Proceedings of 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, IEEE, 2014.
    [10] MITSUNO H, MARUYAMA T, IIYAMA K, et al.. Sub-μm electrode spacing SOI-PIN photodiode fabricated by CMOS compatible process[C]. Proceedings of the 21st Opto, Electronics and Communications Conference(OECC) held jointly with 2016 International Conference on Photonics in Switching, IEEE, 2016.
    [11] JONAK-AUER I, TEVA J, PARK J M, et al.. New integration concept of PIN photodiodes in 0.35μm CMOS technologies[J]. Proceedings of SPIE, 2012, 8431:843115. doi: 10.1117/12.922268
    [12] BIGAS M, CABRUJA E, FOREST J, et al.. Review of CMOS image sensors[J]. Microelectronics Journal, 2006, 37(5):433-451. doi: 10.1016/j.mejo.2005.07.002
    [13] NAKAMURA J. Image Sensors and Signal Processing for Digital Still Cameras[M]. Boca Raton:CRC Press, 2006.
    [14] OHTA J. Smart CMOS Image Sensors and Applications[M]. Boca Raton:CRC Press, 2008.
    [15] RAZAVI B. Design of Analog CMOS Integrated Circuit[M]. 2nd ed. New York:McGraw-Hill Education, 2017.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1809
  • HTML全文浏览量:  577
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2018-12-29
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!