留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫覆盖不规则海面的非均匀空-水信道量子密钥分发

王潋 周媛媛 周学军 陈霄

王潋, 周媛媛, 周学军, 陈霄. 泡沫覆盖不规则海面的非均匀空-水信道量子密钥分发[J]. 中国光学(中英文), 2019, 12(6): 1362-1375. doi: 10.3788/CO.20191206.1362
引用本文: 王潋, 周媛媛, 周学军, 陈霄. 泡沫覆盖不规则海面的非均匀空-水信道量子密钥分发[J]. 中国光学(中英文), 2019, 12(6): 1362-1375. doi: 10.3788/CO.20191206.1362
WANG Lian, ZHOU Yuan-yuan, ZHOU Xue-jun, CHEN Xiao. Quantum key distribution based on heterogeneous air-water channels with foam-covered irregular sea surfaces[J]. Chinese Optics, 2019, 12(6): 1362-1375. doi: 10.3788/CO.20191206.1362
Citation: WANG Lian, ZHOU Yuan-yuan, ZHOU Xue-jun, CHEN Xiao. Quantum key distribution based on heterogeneous air-water channels with foam-covered irregular sea surfaces[J]. Chinese Optics, 2019, 12(6): 1362-1375. doi: 10.3788/CO.20191206.1362

泡沫覆盖不规则海面的非均匀空-水信道量子密钥分发

doi: 10.3788/CO.20191206.1362
基金项目: 

国家自然科学基金资助项目 61302099

详细信息
    作者简介:

    王潋(1992—), 女, 湖南浏阳人, 博士研究生, 2013年、2015年于湖南师范大学分别获得学士、硕士学位, 主要从事量子保密通信方向的研究。E-mail:15623529329@163.com

    周媛媛(1979—), 女, 湖南常德人, 博士, 副教授, 硕士生导师, 2002年、2005年于海军工程大学分别获得学士、硕士学位, 2010年于国防科技大学获得博士学位, 主要从事水下光通信及量子保密通信方向的研究。E-mail:yyzhou516@163.com

    周学军(1962—),男,甘肃古浪人,博士,教授,博士生导师,1979年于西北电讯工程学院获得学士学位,1988年于解放军通信工程学院获得硕士学位,2003年于国防科技大学获得博士学位,主要从事水下光通信及量子保密通信方向的研究。E-mail:Liuzh531@163.com

  • 中图分类号: O431.2

Quantum key distribution based on heterogeneous air-water channels with foam-covered irregular sea surfaces

Funds: 

National Natural Science Foundation of China 61302099

More Information
  • 摘要: 针对空-水量子密钥分发(Quantum Key Distribution,QKD),综合考虑海风影响、泡沫覆盖的不规则海面、空-水信道复杂多变性和量子偏振态多重散射过程,建立了非均匀空-水信道复合模型。据此完善了空-水QKD系统量子误码率理论模型,并采用偏振矢量蒙特卡罗算法模拟,详细分析了不同海洋环境下非均匀空-水信道光量子传输性能,及空-水QKD整体传输性能。结果表明:清澈海水条件下的非均匀空-水信道可实现水下百米量级的密钥分发,但风速和传输距离的增大都会导致光子退偏比增大,保真度减小,偏振误码率增加;同时风速和泡沫层厚度的增大也会造成空-水QKD系统量子误码率上升,密钥生成率和传输距离下降,且随信号波长的增加这两者也会增加,在波长为532 nm,信道由最佳(无风无泡沫)变至最差(暴风且泡沫层为6 cm)时,水下传输距离由120.8 m缩减至85 m,基本能保障水下航行器百米级的安全潜深,而采用拖拽浮标等措施又可进一步增加空-水QKD的安全距离。由此验证了泡沫覆盖不规则海面下非均匀空-水信道诱骗态QKD的可行性,对未来空-水一体量子通信链路的实现具有参考价值。

     

  • 图 1  “泡沫-不规则海面”模型

    Figure 1.  Model of "foam-irregular sea surface"

    图 2  泡沫粒子结构

    Figure 2.  Structure of foam particle

    图 3  不规则海面的光束传输示意图

    Figure 3.  Diagram of beam propagation for irregular sea surface

    图 4  多层大气/海水信道模型的光传输图示

    Figure 4.  Schematic diagram of beam propagation in the multilayer atmospheric/seawater channel model

    图 5  空-水信道光传输示意图

    Figure 5.  Diagram of beam propagation in the air-water channel

    图 6  不同海水中,光衰减随传输距离的变化

    Figure 6.  Light attenuation varies with transmission distance in different sea waters

    图 7  不同风速下的光子退偏比和保真度

    Figure 7.  Depolarization ratio and fidelity of the photon at different wind speeds

    图 8  不同风速下的偏振误码率

    Figure 8.  Polarization error rate at different wind speeds

    图 9  不同风速下的QBER

    Figure 9.  QBERs at different wind speeds

    图 10  不同泡沫层厚度下,密钥生成率随传输距离的变化情况

    Figure 10.  Key generation rate varies with transmission distance at different foam thicknesses

    图 11  不同波长下,密钥生成率随传输距离的变化

    Figure 11.  Key generation rate varies with transmission distance at different wavelengths

    表  1  主要仿真参数设置

    Table  1.   The main simulation parameters

    参数 取值 参数 取值
    Idc 60 Hz FOV 174 mrad
    λ 532 nm Δλ 0.12×10-9 nm
    Δt 35 ns Δt 200 ps
    A 20 cm2 ηB 0.3
    下载: 导出CSV
  • [1] 张冬辰, 周吉.军事通信[M]. 2版.北京:国防工业出版社, 2008.

    ZHANG D CH, ZHOU J. Military Communications[M]. 2nd ed. Beijing:National Defense Industry Press, 2008.(in Chinese)
    [2] LANZAGORTA M. Underwater Communications[M]. California:Morgan & Claypool, 2012.
    [3] BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing[C]. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, IEEE, 1984: 175-179.
    [4] LO H K, CURTY M, QI B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13):130503. doi: 10.1103/PhysRevLett.108.130503
    [5] KORZH B, LIM C C W, HOULKANN R, et al.. Provably secure and practical quantum key distribution over 307 km of optical fibre[J]. Nature Photonics, 2015, 9(3):163-168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=233b7b241043c7e2d29bac9051c3d62e
    [6] YIN H L, CHEN T Y, YU Z W, et al.. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19):190501. doi: 10.1103/PhysRevLett.117.190501
    [7] LIU L, GUO F ZH, WEN Q Y. Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources[J]. Scientific Reports, 2017, 7(1):11370. doi: 10.1038/s41598-017-09367-y
    [8] 彭承志, 潘建伟.量子科学实验卫星—"墨子号"[J].中国科学院院刊, 2016, 31(9):1096-1104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201609015

    PENG CH ZH, PAN J W. Quantum science experimental satellite "Micius"[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(9):1096-1104.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201609015
    [9] YIN J, CAO Y, LI Y H, et al.. Satellite-to-ground entanglement-based quantum key distribution[J]. Physical Review Letters, 2017, 119(20):200501. doi: 10.1103/PhysRevLett.119.200501
    [10] LIAO SH K, YONG H L, LIU CH, et al.. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication[J]. Nature Photonics, 2017, 11(8):509-513. doi: 10.1038/nphoton.2017.116
    [11] LIAO SH K, CAI W Q, LIU W Y, et al.. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670):43-47. doi: 10.1038/nature23655
    [12] ZHAI P W, KATTAWAR G W, YANG P. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems.Ⅱ.the hybrid matrix operator-Monte Carlo method[J]. Applied Optics, 2008, 47(8):1063-1071. doi: 10.1364/AO.47.001063
    [13] 魏安海.光脉冲在大气-海水混合信道中传输特性研究[D].西安: 中国科学院研究生院(西安光学精密机械研究所), 2014.

    WEI A H. Simulative study of optical pulse propagation properties in atmosphere-seawater hybrid channel[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Science, 2014.(in Chinese)
    [14] 李祥震, 苗希彩, 亓晓, 等.复杂海况下激光气-海信道传输特性[J].光学学报, 2018, 38(3):0301002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201803023

    LI X ZH, MIAO X C, QI X, et al.. Laser atmosphere-seawater channel transmission characteristics under complicated sea conditions[J]. Acta Optica Sinica, 2018, 38(3):0301002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201803023
    [15] 周飞, 雍海林, 李东东, 等.基于不同介质间量子密钥分发的研究[J].物理学报, 2014, 63(14):140303. doi: 10.7498/aps.63.140303

    ZHOU F, YONG H L, LI D D, et al.. Study on quantum key distribution betweem different media[J]. Acta Physica Sinica, 2014, 63(14):140303.(in Chinese) doi: 10.7498/aps.63.140303
    [16] UHLMANN J, LANZAGORTA M, VENEGAS-ANDRACA S E. Quantum communications in the maritime environment[C]. OCEANS 2015-MTS/IEEE Washington, IEEE, 2015.
    [17] SHI P, ZHAO SH CH, LI W D, et al.. Feasibility of underwater free space quantum key distribution[J]. arXiv preprint arXiv: arXiv: 1402.4666, 2014.
    [18] SHI P, ZHAO SH CH, GU Y J, et al.. Channel analysis for single photon underwater free space quantum key distribution[J]. Journal of the Optical Society of America A, 2015, 32(3):349-356. doi: 10.1364/JOSAA.32.000349
    [19] JI L, GAO J, YANG A L, et al.. Towards quantum communications in free-space seawater[J]. Optics Express, 2017, 25(17):19795-19806. doi: 10.1364/OE.25.019795
    [20] 王潋, 周媛媛, 周学军, 等.泡沫覆盖不规则海面的空-水量子密钥分发[J].光学学报, 2018, 38(10):1027002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201810045

    WANG L, ZHOU Y Y, ZHOU X J, et al.. Air-water quantum key distribution on irregular sea surface covered with foams[J]. Acta Optica Sinica, 2018, 38(10):1027002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201810045
    [21] GJERSTAD K I, STAMNES J J, HAMRE B, et al.. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system[J]. Applied Optics, 2003, 42(15):2609-2622. doi: 10.1364/AO.42.002609
    [22] WU J. Bubble flux and marine aerosol spectra under various wind velocities[J]. Journal of Geophysical Research:Oceans, 1992, 97(C2):2327-2333. doi: 10.1029/91JC02568
    [23] 亓晓.泡沫覆盖气-海界面的激光传输特性[D].西安: 西安电子科技大学, 2015: 46-48.

    QI X. Propagation characteristics of laser beam traversing the air-sea interface with foams[D]. Xi'an: Xidian University, 2015: 46-48.(in Chinese)
    [24] 黄文超.蓝绿激光通过粗糙海面的传输特性研究[D]: 西安: 西安电子科技大学, 2012;

    HUANG W CH. Study of the character of blue-green laser transmission through sea surface[D]. Xi'an: Xidian University, 2012.(in Chinese)
    [25] GOOCH J W. Snell's Law[M]. New York:Springer, 2011:673-675.
    [26] 李景镇.光学手册[M].西安:陕西科学技术出版社, 2010.

    LI J ZH. Handbook of Optics[M]. Xi'an:Shanxi Science and Technology Press, 2010.(in Chinese)
    [27] ZENG ZH Q, FU SH, ZHANG H H, et al., A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1):204-238.
    [28] GAWDI Y J. Underwater free space optics[D]. Raleigh: North Carolina State University, 2006.
    [29] JOHNSON L J, GREEN R J, LEESON M S. Underwater optical wireless communications:depth dependent variations in attenuation[J]. Applied Optics, 2013, 52(33):7867-7873. doi: 10.1364/AO.52.007867
    [30] ZHAI P W, HU Y S, CHOWDHARY J, et al.. A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(7-8):1025-1040. doi: 10.1016/j.jqsrt.2009.12.005
    [31] WU Z S, WANG Y P. Electromagnetic scattering for multilayered sphere: recursive algorithms[J]. Radio Science, 1991, 26(6):1393-1401. doi: 10.1029/91RS01192
    [32] TSANG L, DING K H, ZHANG G F, et al.. Backscattering enhancement and clustering effects of randomly distributed dielectric cylinders overlying a dielectric half space based on Monte-Carlo simulations[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(5):488-499. doi: 10.1109/8.384193
    [33] KALOS M H, JACQUES S L. Monte Carlo Methods[M]. New Jersey:John Wiley & Sons, 2008.
    [34] ZHOU Y H, YU Z W, WANG X B. Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%[J]. Physical Review A, 2014, 89(5):052325. doi: 10.1103/PhysRevA.89.052325
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1014
  • HTML全文浏览量:  256
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 修回日期:  2019-02-18
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回