留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层析成像的激光强度分布测量方法

王倩 蔡伟伟 陶波

王倩, 蔡伟伟, 陶波. 基于层析成像的激光强度分布测量方法[J]. 中国光学(中英文).
引用本文: 王倩, 蔡伟伟, 陶波. 基于层析成像的激光强度分布测量方法[J]. 中国光学(中英文).
WANG Qian, CAI Wei-wei, TAO Bo. Laser intensity distribution measurement method based on tomographic imaging[J]. Chinese Optics.
Citation: WANG Qian, CAI Wei-wei, TAO Bo. Laser intensity distribution measurement method based on tomographic imaging[J]. Chinese Optics.

基于层析成像的激光强度分布测量方法

基金项目: 国家重点实验室开放基金(No. SKLLIM1809)
详细信息
    作者简介:

    王 倩(1997—),女,陕西咸阳人,博士在读,2014-2018年就读于四川大学机械设计制造及其自动化专业,于2018年获得工学学士学位,2018年9月至今博士就读于上海交通大学机械与动力工程学院,专业为动力工程及工程热物理,主要从事燃烧诊断方面的研究。E-mail:wangqian_xdd@sjtu.edu.cn

    蔡伟伟(1985—),男,浙江温州人,上海交通大学机械与动力工程学院特别研究员、博士生导师。致力于计算成像与燃烧诊断技术的交叉与融合,形成了具有特色的热物性与热物理测试研究方向。近年来,相继在Science、PECS等期刊发表论文90余篇。2016年入选国家高层次人才引进计划、2018年获得德国埃尔朗根高等光学研究院青年科学家奖

    陶 波(1986—),男,安徽舒城人,西北核技术研究所 副研究员,主要从事激光参数测量及诊断方面的研究工作。E-mail:taobo@nint.ac.cn

  • 中图分类号: TP394.1;TH691.9

Laser intensity distribution measurement method based on tomographic imaging

Funds: Supported by State Key Laboratory of Laser Interaction with Matter Research Fund (No. SKLLIM1809)
More Information
  • 摘要: 为了对激光光强分布进行准确的测量,本工作提出基于层析成像技术的激光光强分布测量方法。首先,通过数值仿真计算,对本工作中采用的成像模型的准确性以及重建算法的收敛性进行验证。对不同激光光强分布模型以及不同随机噪声等级时的重建精度进行评估。经计算,采用不同典型激光光强模型时其重建误差均小于等于7.02%;在施加10%以内随机噪声时,重建误差均小于8.5%。此外,设计并进行实验,搭建层析成像系统,采用定制的一分七光纤束实现七个角度信号的测量。七个角度分布在垂直于激光光束的平面内近半圆周内,各个角度距离重建区域的距离约为160毫米,且七个角度的角度覆盖范围约为150°。实验时,通过探测激光光束穿过若丹明-乙醇溶液之后的体激光诱导荧光信号,结合后续的数据处理过程来间接实现激光光强三维分布的反演。在数据处理过程中,采用交替迭代重建算法对探测信号进行吸收矫正的三维重建,可间接地获得激光光强分布。为了定量评估测量精度,在进行重建时仅采用其中六个角度,将余下一角度的重建反投影以及投影数据间的相关性用来间接证明此重建方法的可行性。计算结果表明,该角度投影以及反投影之间的相关性系数为0.9802,可间接的验证该方法的可行性。可以预见,本工作提出的激光光强三维测量方案在激光应用领域具有广泛的前景。

     

  • 图 1  成像过程原理图

    Figure 1.  Illustration of the imaging process

    图 2  不同激光光强三维分布phantom及其重建结果等值面示意图:(a−b)为沿着光束传播方向光强无变化的高斯分布,(c−d)为沿着光束传播方向光强分布有变化的分布,(e−f)为着光束传播方向光强无变化的非高斯分布;(a)、(c)、(e)为原始phantom,(b)、(d)、(f)为对应的重建结果

    Figure 2.  Isosurfaces of laser intensity distribution 3D phantoms and the corresponding reconstructions: (a−b) Laser intensity with Gaussian distribution, kept unhanged along the propagation direction of the beam; (c−d) Laser intensity with Gaussian distribution, changed along the propagation direction of the beam; (e−f) Laser intensity with non-Gaussian distribution, unhanged along the propagation direction of the beam; (a), (c) and (e) are phantoms and (b), (d) and (f) are the corresponding reconstructions.

    图 3  不同信噪比下激光光强分布三维重建结果等值面及中间截面激光光强二维分布示意图:(a−b)、(c−d)、(e−f)、(g−h)和(i−j)分别为施加2%, 4%, 6%, 8%和10%的随机噪声

    Figure 3.  Isosurfaces of laser intensity distribution 3D reconstructions and the corresponding 2D slices: (a−b), (c−d), (e−f), (g−h) and (i−j) are corresponding to 2%, 4%, 6%, 8% and 10% random noise, respectively.

    图 4  不同信噪比下重建误差曲线

    Figure 4.  Curve of the reconstruction error corresponding to different noise levels.

    图 5  实验装置示意图

    Figure 5.  Illustration of the experiment setup.

    图 6  各角度位置示意图

    Figure 6.  Schematic of the position of the views.

    图 7  重建结果示意图。(a)三维激光光强重建结果示意图; (b)某中间截面激光光强二维分布示意图

    Figure 7.  Schematic of the reconstruction. (a) 3D reconstruction of the light intensity; (b) 2D center slice of the 3D reconstruction.

    图 8  投影与反投影对比示意图。(a)实验测得七个角度激光光强投影; (b)某角度投影与反投影(其中,投影和反投影相关系数为0.9802)

    Figure 8.  Contrast of projection and re-projection. (a) Projections from seven views obtained experimentally;(b) Projection and re-projection from a specific view

  • [1] 王家乐. 基于光斑图像的激光能量密度分布测量技术[D]. 长春: 长春理工大学, 2013

    WANG J L. Measurement technology of energy density distribution based on spot image[D]. Changchun: Changchun University of Science and Technology, 2013. (in Chinese)
    [2] 王艳茹, 王建忠, 冉铮惠, 等. 高能激光光束质量β因子的影响因素分析[J]. 中国光学,2021,14(2):353-360. doi: 10.37188/CO.2020-0137

    WANG Y R, WANG J ZH, RAN ZH H, et al. Analysis of effects on the beam quality β factor of high power laser[J]. Chinese Optics, 2021, 14(2): 353-360. (in Chinese) doi: 10.37188/CO.2020-0137
    [3] 郜魏柯, 杜小平, 王阳, 等. 激光散斑目标探测技术综述[J]. 中国光学,2020,13(6):1182-1193. doi: 10.37188/CO.2020-0049

    GAO W K, DU X P, WANG Y, et al. Review of laser speckle target detection technology[J]. Chinese Optics, 2020, 13(6): 1182-1193. (in Chinese) doi: 10.37188/CO.2020-0049
    [4] 文康, 李和章, 马壮, 等. 光斑尺寸对连续激光辐照铝合金温度响应影响研究[J]. 中国光学,2020,13(5):1023-1031. doi: 10.37188/CO.2020-0022

    WEN K, LI H ZH, MA ZH, et al. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Optics, 2020, 13(5): 1023-1031. (in Chinese) doi: 10.37188/CO.2020-0022
    [5] 王雷, 黎高平, 杨照金, 等. 激光功率能量计量方法研究[J]. 2006. (查阅所有网上资料, 未找到本条文献信息, 请联系作者确认)

    WANG L, LI G P, YANG ZH J, et al. . Research on laser power energy measurement method[J]. 2006. (in Chinese)
    [6] 3D micro-profile measurement of energy distribution of laser beam[C]. International Symposium on Precision Mechanical Measurements, 2002. (查阅所有网上资料, 未找到本条文献信息, 请联系作者确认)
    [7] ZHU ZH, WANG Y ZH, YI Y X, et al. Novel direct-detection scheme for measuring energy distribution of laser spots in outfield[J]. Opto-Electronic Engineering, 2005, 32(11): 49-53.
    [8] CHO K Y, SATIJA A, POURPOINT T L, et al. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion[J]. Applied Optics, 2014, 53(3): 316-326. doi: 10.1364/AO.53.000316
    [9] NYGREN J, HULT J, RICHTER M, et al. Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine[J]. Proceedings of the Combustion Institute, 2002, 29(1): 679-685. doi: 10.1016/S1540-7489(02)80087-6
    [10] 陈琦, 徐熙平, 姜肇国, 等. 基于光场相机的深度面光场计算重构[J]. 光学 精密工程,2018,26(3):708-714. doi: 10.3788/OPE.20182603.0708

    CHEN Q, XU X P, JIANG ZH G, et al. Light field computational reconstruction from focal planes based on light field camera[J]. Optics and Precision Engineering, 2018, 26(3): 708-714. (in Chinese) doi: 10.3788/OPE.20182603.0708
    [11] SUN J, XU CH L, ZHANG B, et al. Three-dimensional temperature field measurement of flame using a single light field camera[J]. Optics Express, 2016, 24(2): 1118-1132. doi: 10.1364/OE.24.001118
    [12] LILLO P M, GREENE M L, SICK V. Plenoptic single-shot 3D imaging of in-cylinder fuel spray geometry[J]. Zeitschrift für Physikalische Chemie, 2015, 229(4): 549-560.
    [13] SAMARASINGHE J, PELUSO S, SZEDLMAYER M, et al. Three-dimensional chemiluminescence imaging of unforced and forced swirl-stabilized flames in a lean premixed multi-nozzle can combustor[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10): 101503. doi: 10.1115/1.4024987
    [14] CAI W W, LI X S, MA L. Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging[J]. Applied Optics, 2013, 52(33): 8106-8116. doi: 10.1364/AO.52.008106
    [15] CAI W W, LI X S, LI F, et al. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J]. Optics Express, 2013, 21(6): 7050-7064. doi: 10.1364/OE.21.007050
    [16] SHI SH X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
    [17] ZHOU G X, LI F, WANG K L, et al. Research on a quantitative method for three-dimensional computed tomography of chemiluminescence[J]. Applied Optics, 2020, 59(17): 5310-5318. doi: 10.1364/AO.393225
    [18] WINDLE C I, ANDERSON J, BOYD J, et al. In situ imaging of 4D fire events in a ground vehicle testbed using customized fiber-based endoscopes[J]. Combustion and Flame, 2021, 224: 225-232. doi: 10.1016/j.combustflame.2020.11.022
    [19] WANG Q, YU T, LIU H C, et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. Journal of the Optical Society of America B, 2020, 37(4): 1231-1239. doi: 10.1364/JOSAB.385291
    [20] LIU H C, PAOLILLO G, ASTARITA T, et al. Computed tomography of chemiluminescence for the measurements of flames confined within a cylindrical glass[J]. Optics Letters, 2019, 44(19): 4793-4796. doi: 10.1364/OL.44.004793
    [21] ZHANG ZH Y. Flexible camera calibration by viewing a plane from unknown orientations[C]. Proceedings of the Seventh IEEE International Conference on Computer Vision, IEEE, 1999: 666-673.
    [22] YU T, LIU H C, CAI W W. On the quantification of spatial resolution for three-dimensional computed tomography of chemiluminescence[J]. Optics Express, 2017, 25(20): 24093-24108. doi: 10.1364/OE.25.024093
    [23] YU T, TIAN B, CAI W W. Development of a beam optimization method for absorption-based tomography[J]. Optics Express, 2017, 25(6): 5982-5999. doi: 10.1364/OE.25.005982
    [24] WEI CH Y, PINEDA D I, PAXTON L, et al. Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames[J]. Applied Physics B, 2018, 124(6): 123. doi: 10.1007/s00340-018-6984-z
    [25] YU T, LI Z M, RUAN C, et al. Development of an absorption-corrected method for 3D computed tomography of chemiluminescence[J]. Measurement Science and Technology, 2019, 30(4): 045403. doi: 10.1088/1361-6501/ab01c1
    [26] LIU H C, SUN B, CAI W W. kHz-rate volumetric flame imaging using a single camera[J]. Optics Communications, 2019, 437: 33-43. doi: 10.1016/j.optcom.2018.12.036
    [27] LIU H C, YU T, ZHANG M, et al. Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view[J]. Applied Optics, 2017, 56(25): 7107-7115. doi: 10.1364/AO.56.007107
  • 加载中
图(8)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  81
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-06-20

目录

    /

    返回文章
    返回