Design and test verification of baffle for off-axis three-mirror space optical remote sensor
-
摘要: 遮光罩是空间光学遥感器的重要组成部分,是抑制空间光学遥感器杂散光的首要措施。遮光罩削弱杂散光效果的好坏直接影响到光学遥感器光学系统的成像品质。本文设计了一种满足离轴三反空间光学遥感器要求的大尺寸碳纤维/环氧复合材料遮光罩,并结合有限元分析、杂散光分析及力学试验、光学系统传递函数检测手段来验证该遮光罩是否满足航天使用要求。结果显示,各视场光学系统传递函数检测结果基本一致,均在0.2以上。表明该大尺寸遮光罩具备良好的结构的稳定性、可靠性,能够满足空间应用要求。Abstract: The baffle is an important component of the space optical remote sensor, which is the main way to weaken the stray light from the out-of-field radiation source, and the imaging quality of the space optical remote sensor is dependent on the baffle's performance. In this paper, a large size baffle layout will be designed to meet the off-axis Wetherell TMA optical system. The baffle is made of carbon fiber reinforced polymer(CFRP). The FEM analysis, stray light analysis, mechanical vibration test and optical system MTF test are used to verify the usage requirement in aerospace. Results show that the MTF of the optical remote sensor can reach up to 0.2 in each field of view. It is indicated that the baffle has stable structure and good reliability and can meet the requirements of space applications.
-
Key words:
- space optical remote sensor /
- baffle /
- stability /
- FEM /
- stray light analysis
-
表 1 遮光罩前3阶自然频率及振型描述
Table 1. 1st-3rd order natural frequencies and vibration modes shapes
阶数 Fn(Hz) 振型描述 1 83.8 遮光罩上板前端居中位置沿Z轴向平动 2 159.5 遮光罩上板前端居中位置绕Y轴方向摆动 3 183.1 遮光罩上板前端居中位置绕X轴方向摆动 表 2 遮光罩装配前后1 g重力作用下主支撑框架变形结果
Table 2. Supporting frame′s displacement results under 1 g gravity with and without baffle
重力方向 装配前/μm 装配后/μm 差值/μm X向 4.060 4.160 +0.1 Y向 4.544 4.565 +0.02 Z向 9.417 10.29 +0.87 表 3 遮光罩动力学试验结果
Table 3. Mechanical vibration test results of the baffle
0.2g正弦扫频 谐振频率/Hz 正弦振动 0.2g正弦扫频 谐振频率/Hz 响应加速度/g 放大倍率 X向 189.22 5.73 1.64 188.73 Y向 176.45 6.16 1.76 175.99 Z向 479.21 3.66 1.04 479.21 表 4 遮光罩力学试验前后传函检测数据
Table 4. MTF results before and after mechanical vibration test of baffle
测量状态 CCD1 CCD2 CCD3 CCD4 CCD5 CCD6 前 CTF 0.292 0.291 0.293 0.292 0.291 0.299 MTF 0.229 0.229 0.230 0.229 0.229 0.235 后 CTF 0.283 0.296 0.297 0.292 0.296 0.294 MTF 0.223 0.233 0.233 0.229 0.232 0.231 表 5 遮光罩热真空试验前后传函检测数据
Table 5. MTF results before and after thermal vacuum test of baffle
测量状态 CCD1 CCD2 CCD3 CCD4 CCD5 CCD6 热真空前 CTF 0.298 0.302 0.295 0.293 0.297 0.295 MTF 0.235 0.237 0.232 0.230 0.233 0.231 热真空后 CTF 0.286 0.296 0.300 0.295 0.300 0.292 MTF 0.225 0.232 0.235 0.231 0.236 0.230 表 6 遮光罩热光学传函检测数据
Table 6. MTF results in the thermal vacuum imaging test of baffle
测量状态 CCD1 CCD2 CCD3 CCD4 CCD5 CCD6 16 ℃ CTF 0.269 0.273 0.272 0.281 0.269 0.267 MTF 0.211 0.214 0.213 0.221 0.211 0.209 20 ℃ CTF 0.268 0.273 0.270 0.278 0.271 0.263 MTF 0.211 0.214 0.212 0.218 0.213 0.207 24 ℃ CTF 0.264 0.268 0.271 0.279 0.264 0.264 MTF 0.207 0.211 0.213 0.219 0.207 0.207 -
[1] 王金堂,乌崇德.国外几种星载光学遥感器的发展情况简介[J].航天返回与遥感,2002,23(2):15-20.WANG J T,WU C D. Introduction of some foreign spaceborne optical remote sensors[J]. Spacecraft Recovery & Remote Sensing,2002,23(2):15-20.(in Chinese) [2] 韩昌元.近代高分辨地球成像商业卫星[J].中国光学与应用光学,2010,3(3):201-208.HAN C Y. Recent earth imaging commercial satellites with high resolutions[J]. Chinese J. Optics and Applied Optics,2010,3(3):201-208.(in Chinese) [3] FIGOSKI J W. The QuickBird telescope: the reality of large, high-quality, commercial space optics[J]. SPIE,1999,3779:22-30 [4] [5] BICKNELL W E,DIGENIS C J,FORMAN S E. EO-1 Advanced land imager[J]. SPIE,1999,3750:80-88. [6] SHIMODA H. Japanese earth observation programs[J]. SPIE,1 999,3870:37-48. [7] 李宗轩,金光,张雷,等.3.5 m口径空间望远镜单块式主镜技术展望[J].中国光学,2014,7(4):532-541.LI Z X,JIN G,ZHANG L,et al.. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics,2014,7(4):532-541.(in Chinese) [8] 赵汝成,包建勋.大口径轻质SiC反射镜的研究与应用[J].中国光学,2014,7(4):552-558.ZHAO R CH,BAO J X. Investigation and application of large scale lightweight SiC mirror[J]. Chinese Optics,2014,7(4):552-558.(in Chinese) [9] 巩盾.空间遥感测绘光学系统研究综述[J].中国光学,2015,8(5):714-524.GONG D. Review on mapping space remote sensor optical system[J]. Chinese Optics,2015,8(5):714-524.(in Chinese) [10] 郭疆,邵明东,王国良,等.空间遥感相机碳纤维机身结构设计[J].光学 精密工程,2012,20(3):571-578.GUO J,SHAO M D,WANG G L,et al.. Design of optical-mechanical structure made of CFC in space remote sensing camera[J]. Opt. Precision Eng.,2012,20(3):571-578.(in Chinese) [11] 林再文.碳纤维增强复合材料在空间光学结构中的应用[J].光学 精密工程,2007,15(8):1181-1185.LIN Z W. Application of carbon fibre reinforced composite to space optical structure wide coverage and high resolution[J]. Opt. Precision Eng.,2007,15(8):1181-1185.(in Chinese) [12] 李刚.空间目标天基红外探测光学系统研究[D].西安:西安光学精密机械研究所,2013.LI G. Research about space-based IR-optical system for space object detection[D]. Xi'an:Xi'an Institute of Optics & Precision Mechnics,2013.(in Chinese) [13] ZHONG X,JIA J Q. Stray light removing design and simulation of spaceborne camera[J]. Opt. Precision Eng.,2009,17(3):621-625.(in Chinese) [14] 刘洋,方勇华,吴军,等.中红外平面光栅光谱仪系统杂散光分析[J].红外与激光工程,2015,44(4):1164-1171.LIU Y,FANG Y H,WU J,et al.. Stray light analysis for a mid-infrared plane grating spectrometer system[J]. Infrared and Laser Engineering,2015,44(4):1164-1171(in Chinese) [15] 李双,裘桢炜,王相京.星载大气主要温室气体监测仪杂光模拟分析[J].红外与激光工程,2015,44(2):616-619.LI SH,QIU ZH W,WANG X J. Stray light simulation and analysis of space-borne spatial heterodyne spectrometer for monitoring greenhouse gases[J]. Infrared and Laser Engineering,2015,44(2):616-619(in Chinese)