留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离轴三反光学遥感器遮光罩的设计与试验验证

齐光 王书新 李景林 焦爱祥

齐光, 王书新, 李景林, 焦爱祥. 离轴三反光学遥感器遮光罩的设计与试验验证[J]. 中国光学(中英文), 2016, 9(4): 472-482. doi: 10.3788/CO.20160904.0472
引用本文: 齐光, 王书新, 李景林, 焦爱祥. 离轴三反光学遥感器遮光罩的设计与试验验证[J]. 中国光学(中英文), 2016, 9(4): 472-482. doi: 10.3788/CO.20160904.0472
QI Guang, WANG Shu-xin, LI Jing-lin, JIAO Ai-xiang. Design and test verification of baffle for off-axis three-mirror space optical remote sensor[J]. Chinese Optics, 2016, 9(4): 472-482. doi: 10.3788/CO.20160904.0472
Citation: QI Guang, WANG Shu-xin, LI Jing-lin, JIAO Ai-xiang. Design and test verification of baffle for off-axis three-mirror space optical remote sensor[J]. Chinese Optics, 2016, 9(4): 472-482. doi: 10.3788/CO.20160904.0472

离轴三反光学遥感器遮光罩的设计与试验验证

基金项目: 

国家高技术研究发展计划(863计划)资助项目 No.863-2-5-1-13B

详细信息
    通讯作者:

    齐光(1981-),男,吉林白城人,硕士,助理研究员,2005年于天津大学获得学士学位,2015年于吉林大学获得硕士学位,主要从事空间光学仪器光机结构设计方面的研究。E-mail:ygwx01@163.com

  • 中图分类号: V445.8;TH16

Design and test verification of baffle for off-axis three-mirror space optical remote sensor

Funds: 

National High-tech R & D Program of China No.863-2-5-1-13B

More Information
  • 摘要: 遮光罩是空间光学遥感器的重要组成部分,是抑制空间光学遥感器杂散光的首要措施。遮光罩削弱杂散光效果的好坏直接影响到光学遥感器光学系统的成像品质。本文设计了一种满足离轴三反空间光学遥感器要求的大尺寸碳纤维/环氧复合材料遮光罩,并结合有限元分析、杂散光分析及力学试验、光学系统传递函数检测手段来验证该遮光罩是否满足航天使用要求。结果显示,各视场光学系统传递函数检测结果基本一致,均在0.2以上。表明该大尺寸遮光罩具备良好的结构的稳定性、可靠性,能够满足空间应用要求。

     

  • 图 1  遮光罩结构模型

    Figure 1.  Model of baffle structure

    图 2  遮光罩与主支撑框架联接简图

    Figure 2.  Conjunction of the baffle and supporting frame

    图 3  遮光罩与主支撑框架有限元模型

    Figure 3.  FEM model of the baffle and supporting frame

    图 4  遮光罩前三阶振型图

    Figure 4.  First 3rd order modes shapes

    图 5  加速度响应曲线

    Figure 5.  Acceleration response curve

    图 6  应力变形云图

    Figure 6.  Stress contour diagram

    图 7  位移变形云图

    Figure 7.  Displacement contour diagram

    图 8  框架4 ℃温度变形

    Figure 8.  Supporting frame′s displacement contours for 4 ℃ temperature change

    图 9  遮光罩装配后框架4 ℃温度变形

    Figure 9.  Supporting frame′s displacement contours for 4 ℃ temperature change with baffle

    图 10  1 g重力作用下主支撑框架X方向变形

    Figure 10.  Supporting frame′s displacement contours in X-direction under 1 g gravity

    图 11  遮光罩装配后1 g重力作用下主支撑框架X方向变形

    Figure 11.  Supporting frame′s displacement contours in X-direction under 1 g gravity with baffle

    图 12  Tracepro杂散光分析模型

    Figure 12.  Stray light analyse model by Tracepro

    图 13  BRDF模型中的参数

    Figure 13.  Parameters of BRDF model

    图 14  X方向PST曲线

    Figure 14.  PST curve in X direction

    图 15  Y方向PST曲线

    Figure 15.  PST curve in Y direction

    图 16  遮光罩、支撑框架联接后与振动试验台联接状态

    Figure 16.  Conjunction state of baffle and supporting frame on the vibration test bench

    图 17  X方向振动试验前0.2 g特征值扫描曲线

    Figure 17.  0.2 g eigenvalue scanning frequency response in X direction acceleration before vibration test

    图 18  X方向正弦振动加速度响应曲线

    Figure 18.  Response curves in X direction acceleration under sinusoidal vibration

    图 19  X方向振动试验后0.2 g特征值扫描曲线

    Figure 19.  0.2 g eigenvalue scanning frequency response in X direction acceleration after vibration test

    图 20  X方向正弦振动加速度响应曲线

    Figure 20.  Response curves of X direction acceleration

    图 21  热真空光学检测试验

    Figure 21.  Thermal vacuum imaging test

    表  1  遮光罩前3阶自然频率及振型描述

    Table  1.   1st-3rd order natural frequencies and vibration modes shapes

    阶数Fn(Hz)振型描述
    183.8遮光罩上板前端居中位置沿Z轴向平动
    2159.5遮光罩上板前端居中位置绕Y轴方向摆动
    3183.1遮光罩上板前端居中位置绕X轴方向摆动
    下载: 导出CSV

    表  2  遮光罩装配前后1 g重力作用下主支撑框架变形结果

    Table  2.   Supporting frame′s displacement results under 1 g gravity with and without baffle

    重力方向装配前/μm装配后/μm差值/μm
    X4.0604.160+0.1
    Y4.5444.565+0.02
    Z9.41710.29+0.87
    下载: 导出CSV

    表  3  遮光罩动力学试验结果

    Table  3.   Mechanical vibration test results of the baffle

    0.2g正弦扫频 谐振频率/Hz正弦振动 0.2g正弦扫频 谐振频率/Hz
    响应加速度/g放大倍率
    X189.225.731.64188.73
    Y176.456.161.76175.99
    Z479.213.661.04479.21
    下载: 导出CSV

    表  4  遮光罩力学试验前后传函检测数据

    Table  4.   MTF results before and after mechanical vibration test of baffle

    测量状态CCD1CCD2CCD3CCD4CCD5CCD6
    CTF0.2920.2910.2930.2920.2910.299
    MTF0.2290.2290.2300.2290.2290.235
    CTF0.2830.2960.2970.2920.2960.294
    MTF0.2230.2330.2330.2290.2320.231
    下载: 导出CSV

    表  5  遮光罩热真空试验前后传函检测数据

    Table  5.   MTF results before and after thermal vacuum test of baffle

    测量状态CCD1CCD2CCD3CCD4CCD5CCD6
    热真空前CTF0.2980.3020.2950.2930.2970.295
    MTF0.2350.2370.2320.2300.2330.231
    热真空后CTF0.2860.2960.3000.2950.3000.292
    MTF0.2250.2320.2350.2310.2360.230
    下载: 导出CSV

    表  6  遮光罩热光学传函检测数据

    Table  6.   MTF results in the thermal vacuum imaging test of baffle

    测量状态CCD1CCD2CCD3CCD4CCD5CCD6
    16 ℃CTF0.2690.2730.2720.2810.2690.267
    MTF0.2110.2140.2130.2210.2110.209
    20 ℃CTF0.2680.2730.2700.2780.2710.263
    MTF0.2110.2140.2120.2180.2130.207
    24 ℃CTF0.2640.2680.2710.2790.2640.264
    MTF0.2070.2110.2130.2190.2070.207
    下载: 导出CSV
  • [1] 王金堂,乌崇德.国外几种星载光学遥感器的发展情况简介[J].航天返回与遥感,2002,23(2):15-20.

    WANG J T,WU C D. Introduction of some foreign spaceborne optical remote sensors[J]. Spacecraft Recovery & Remote Sensing,2002,23(2):15-20.(in Chinese)
    [2] 韩昌元.近代高分辨地球成像商业卫星[J].中国光学与应用光学,2010,3(3):201-208.

    HAN C Y. Recent earth imaging commercial satellites with high resolutions[J]. Chinese J. Optics and Applied Optics,2010,3(3):201-208.(in Chinese)
    [3] FIGOSKI J W. The QuickBird telescope: the reality of large, high-quality, commercial space optics[J]. SPIE,1999,3779:22-30
    [4]
    [5] BICKNELL W E,DIGENIS C J,FORMAN S E. EO-1 Advanced land imager[J]. SPIE,1999,3750:80-88.
    [6] SHIMODA H. Japanese earth observation programs[J]. SPIE,1 999,3870:37-48.
    [7] 李宗轩,金光,张雷,等.3.5 m口径空间望远镜单块式主镜技术展望[J].中国光学,2014,7(4):532-541.

    LI Z X,JIN G,ZHANG L,et al.. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics,2014,7(4):532-541.(in Chinese)
    [8] 赵汝成,包建勋.大口径轻质SiC反射镜的研究与应用[J].中国光学,2014,7(4):552-558.

    ZHAO R CH,BAO J X. Investigation and application of large scale lightweight SiC mirror[J]. Chinese Optics,2014,7(4):552-558.(in Chinese)
    [9] 巩盾.空间遥感测绘光学系统研究综述[J].中国光学,2015,8(5):714-524.

    GONG D. Review on mapping space remote sensor optical system[J]. Chinese Optics,2015,8(5):714-524.(in Chinese)
    [10] 郭疆,邵明东,王国良,等.空间遥感相机碳纤维机身结构设计[J].光学 精密工程,2012,20(3):571-578.

    GUO J,SHAO M D,WANG G L,et al.. Design of optical-mechanical structure made of CFC in space remote sensing camera[J]. Opt. Precision Eng.,2012,20(3):571-578.(in Chinese)
    [11] 林再文.碳纤维增强复合材料在空间光学结构中的应用[J].光学 精密工程,2007,15(8):1181-1185.

    LIN Z W. Application of carbon fibre reinforced composite to space optical structure wide coverage and high resolution[J]. Opt. Precision Eng.,2007,15(8):1181-1185.(in Chinese)
    [12] 李刚.空间目标天基红外探测光学系统研究[D].西安:西安光学精密机械研究所,2013.

    LI G. Research about space-based IR-optical system for space object detection[D]. Xi'an:Xi'an Institute of Optics & Precision Mechnics,2013.(in Chinese)
    [13] ZHONG X,JIA J Q. Stray light removing design and simulation of spaceborne camera[J]. Opt. Precision Eng.,2009,17(3):621-625.(in Chinese)
    [14] 刘洋,方勇华,吴军,等.中红外平面光栅光谱仪系统杂散光分析[J].红外与激光工程,2015,44(4):1164-1171.

    LIU Y,FANG Y H,WU J,et al.. Stray light analysis for a mid-infrared plane grating spectrometer system[J]. Infrared and Laser Engineering,2015,44(4):1164-1171(in Chinese)
    [15] 李双,裘桢炜,王相京.星载大气主要温室气体监测仪杂光模拟分析[J].红外与激光工程,2015,44(2):616-619.

    LI SH,QIU ZH W,WANG X J. Stray light simulation and analysis of space-borne spatial heterodyne spectrometer for monitoring greenhouse gases[J]. Infrared and Laser Engineering,2015,44(2):616-619(in Chinese)
  • 加载中
图(21) / 表(6)
计量
  • 文章访问数:  1968
  • HTML全文浏览量:  359
  • PDF下载量:  888
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03
  • 修回日期:  2016-04-27
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回